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Abstract— The use of electric vehicle (EV) has grown rapidly
over the past few years. With the increase of renewable energy
mix share and the mature technology available on market, the
EV is now accepted as a reliable and eco-friendly means of
transportation. Considering that the charging time is high when
compared to oil based and that the charging stations are still
few, usually one of the key parameters of choice to EV to
customer is its driving range (DR) capability. This is a decisive
factor since it minimizes the driver’s anxiety on a trip. The EV
autonomy at a given point in time, denoted as the eRange,
depends on many factors making its forecasting a difficult
task. In this paper, we propose the use of machine learning
(ML) techniques to compute the eRange. We use regression
techniques on models trained with publicly available datasets,
evaluated with standard metrics. The experimental results of
ML techniques improve on the results by providing accurate
and smoother estimates of the eRange, easing drivers anxiety.

Keywords: dataset construction; driving range; elec-
tric vehicle; energy consumption; machine learning; re-
gression; Python

I. INTRODUCTION

The global concern on climate change has been a major
focus on recent international agreements, such as the Paris
Agreement [9], leading many car manufacturers to introduce
EV as the eco-friendly solution for sustainable transport
for the future. Thus, EV has grown in popularity in recent
years and as a result, car manufacturers have increased the
competitiveness on the vehicle’s performance [23], namely
the DR capability (the distance such that the EV can travel
with a single charge), since it is a decisive factor for
customers [21].

On a trip, the EV autonomy at a given point in time, de-
fined here as eRange, is an estimate of the remaining driving
distance regarding multiple factors that might influence its
range, such as the EV battery charge at that moment. The
eRange is expressed in kilometers. This estimate eases the
driver’s anxiety on a trip to a charging station and allows
the driver to do the best possible trip planning [36], [37].
The estimation of the eRange is a challenging task, since it
depends on different parameters, such as:

• battery state-of-charge (SoC);
• commute type - city driving or highway driving;
• drivers behavior;
• road inclination;
• vehicle design;
• weather conditions.

These factors exhibit a wide range of variation, leading to a
challenge when performing this estimation. Moreover, it also
depends on the assumptions that one takes by using some
priori knowledge about the problem. Figure 1 shows the main
influencing forces on a vehicle, which are some of the key
variables that lead to the actual battery energy consumption
and makes the eRange computation a challenge task. The
accurate estimation of the eRange allows customers to rely
on its vehicle for longer travel time and efficient charging
plans. The challenges and difficulties posed in the eRange
estimation have lead to recent studies on this topic [20], [41].

A. The use of machine learning

In the past years, the rise in popularity of ML [11], [12],
[31] has shown its effectiveness with a variety of fields such
as big data [17], [48], pattern recognition analysis and data
mining [14]. This is due to its nature of learning models
from existing data to gradually achieve better results making
it a widely recognized tool for complex problems [32]. As a
result, some previous works have employed ML techniques
to address the eRange estimation problem with supervised,
unsupervised and reinforcement learning paradigms, making
accurate predictions.

Some statistical-based eRange estimation techniques use
the average consumption of energy in the past minutes on a
trip. These simple estimations may produce inaccurate and
noisy results, since they account only a small set of factors
and the eRange estimation depends on multiple variables. It
is expected that the use of ML methods will provide better
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Fig. 1. The key influencing forces on a moving vehicle. ( Fi, inertial
force; Ft, tractive force; Fg , gravitational force; Frr , rear rolling resistance
force; Ffr , front rolling resistance force; Far , aerodynamic (air) drag; Fn,
normal force; CG, center Figure; α, the road slope ).
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estimates. Although, the training of the models may take
more time than the existing approaches, it is expected that
their use will improve prediction accuracy. The challenge is
to learn accurate models with adequate response time when
placed on-board of the vehicles.

B. Our proposal

In this paper, we propose to address the eRange forecasting
problem with regression ML techniques. We devise a three
phase approach:

• the dataset construction and preprocessing;
• learning ML models;
• evaluation of the learned ML models, with standard

metrics.
With this approach, we advance the state-of-the-art by using
ML techniques different from the ones in previous studies.
We only consider parameters related to the vehicle and we
do not use historic data traffic.

The remainder of this paper is structured as follows.
Section 2 refers to the state of the art on existing eRange
estimation solutions and their use of the available datasets.
In Section 3, we present the approach and methodologies
adopted in this work. The experimental evaluation and dis-
cussion are reported in Section 4. The paper ends in Section
5 with concluding remarks and directions for future work.

II. STATE OF THE ART

Nowadays, EV have motivated multiple studies concerning
related problems in this field, such as statistical measurement
of charging [16], eRange computation [41], charging topolo-
gies [43], and regenerative braking [44]. A good eRange
prediction is a key EV feature as it reduces driver’s anxiety
while driving and allows better trip planning.

When assessing a solution to the eRange prediction prob-
lem, real EV driving data in the form of a dataset is required
to learn and evaluate the proposed model, and compare it to
existing alternatives, making it indispensable in determining
the effectiveness of the chosen solution.

In this section, we refer to the literature and resources for
the eRange forecasting problem, the availability of public
domain datasets, eRange estimation approaches without and
with ML techniques.

A. Public domain EV datasets

The EV eRange estimation is a recent research topic. On
the past years, some datasets regarding EV have become pub-
licly available for researchers. These datasets are composed
by vehicle data and trip data, which are useful to the eRange
forecasting problem. These datasets are mainly composed by
two types of feature:

• time-series features, where the data points vary as a
function of time;

• trip-invariant features, in which a given value is kept
for the entire trip.

Time-series features are usually the SoC, energy consump-
tion, speed, acceleration, and elevation. The trip-invariant
features refer to vehicle information such as battery capacity,

average energy consumption (AEC), full battery energy
(FBE), full driving distance (FDD) also known as full battery
distance (FBD), vehicle weight, trip information such as
commute type (city or highway), total energy consumption,
and total distance. Table I summarizes the key publicly
available EV datasets, namely:

• the vehicle energy dataset (VED) [33];
• the Emobpy dataset [24];
• the Classic EV X project dataset [19];
• the Charge Car project of the CREATE Lab at Carnegie

Mellon University [1];
• the cloud based EV dataset provided by the national big

data alliance of new energy vehicles (NDANEV) [8].

Table I describes some features found in these datasets
(the * symbol denotes that the feature has missing values).

The VED dataset [33] provides 54 different EV driving
trip data records for estimation, but lack trip and vehicle
information as well as enough EV model variety. It contains
data from three distinct EV, all from the same model, the
2013 Nissan Leaf.

The Emobpy Python tool [24] focuses on EV trip and
charge data generation through empirical mobility statistics
and customizable assumptions. This tool provides an infinite
supply of EV trips as well as proper vehicle information.
This dataset lacks some features such as speed, elevation,
trip, and commute type.

The Charge Car project of the CREATE Lab at Carnegie
Mellon University [1] publicly supplies crowd-sourced data
that has served previous eRange prediction models [47]. This
dataset has a high vehicle diversity due to the open nature
of the platform, allowing any user to upload combustion
engine based vehicle information as well as the location data,
speed, and weather, among other parameters. For instance,
the battery information data could be supplied through the
CREATE RAV4-recorder box [2]. The location, trip and
vehicle information are then used to determine the simulated
EV consumption for each trip. The key features of the dataset
relate to speed, distance, traffic conditions, hills, and driving
behavior. As of the time of writing, a total of 373 unique
trips are publicly available.

A dataset collected through probe data from nearly 500
battery EV by the Japan automobile research institute (JARI)
from February 2011 to January 2013 has the following fea-
tures: time, location, vehicle state (driving, normal charging,
or fast charging), speed, air-conditioner, heater state, and
SoC. Although useful and featured in some papers [29], [30],
[38], [39], for this paper we were unable to acquire this
dataset from [6] perhaps due to the language barrier.

Previous studies in eRange prediction [20] were based
on EVteclab’s electric vehicles in action (EVA) platform,
a Flemish Living Labs project [5]. The platform supplies
a dataset with monitoring data of 30 different models Ford
Connect EV for a time window covering a whole year. This
dataset although supplying a few meaningful parameters such
as timestamp, latitude, longitude, and vehicle speed, was
inaccessible at the time of this writing.
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TABLE I
PUBLIC DOMAIN DATASETS WITH EV DATA AND THEIR KEY PROPERTIES.

VED dataset [33] Emobpy [24] Classic EV X project [19] ChargeCar [1] NDANEV [8]
Trips 507 Unlimited 3 373 2372

EV Models 1 102 1 ? 1
Number of EV 3 N/A 1 ? 5

Features

timestamp,
speed,

location,
battery SoC,

battery voltage,
battery current,

AC power,
heater power,

outside air temperature (OAT)

timestamp,
distance,

instant energy consumption (IEC),
consumption,

average power,
state

timestamp,
IEC,

remain battery energy (RBE),
speed

timestamp,
elevation,

planar distance,
adjusted distance,

speed,
acceleration,
model power,
actual power*,

current*,
voltage*

timestamp,
speed,

total voltage,
total current,
battery SoC,
temp. range,

motor voltage,
motor current,

mileage

The cloud based EV dataset supplied by the NDANEV [8]
has been used in similar eRange prediction approaches [46].
The data was collected from controller area network (CAN)
of five different EV of an undisclosed model through with
T-BOX, later uploading it to NDANEV. This dataset distin-
guishes from the others by including battery cell temperature
information, which measures the battery cell inconsistency.

As some datasets do not explicitly provide vehicle infor-
mation, the EV-database [3] website supplies a database for
existing EV, displaying AEC, DR, and usable battery energy.
The presence of this data, enables that datasets lacking this
feature, can be used in eRange forecasting models.

B. EV autonomy prediction approaches

The eRange forecasting problem has been an interesting
topic in research in recent years, in part due to the increase
in EV usage as they become more efficient. The forecasting
difficulty is in part due to the fact that there are many factors
to take into account when measuring it, such as battery and
road information, previous vehicle trips, and vehicle weight.
This has motivated researchers to seek for solutions for the
problem, resorting to ML techniques.

Related work has shown the use of eRange computation
on EV, stating the need for different types of accuracy on
eRange forcasting as a function of the SoC state. In [45], the
approach is to minimize the performance impact of minimum
cost route searching from high accuracy eRange forecasting.
Other studies have focused on eRange estimation accuracy,
making use of more complex models.

The use of an adaptive “history-based” approach was
proposed by [19], which relies on the past 10 minute AEC
information gradually influenced by the vehicle instant con-
sumption energy, as well as by the SoC. The approach in [18]
computes the eRange through a “basic” algorithm which
depends on the manufacturers invariant vehicle information
such as FBE and AEC, as well as the instant SoC value. Once
the first 10 minutes had passed, the “history-based” applies a
previously configured energy step to the previous prediction,
as functions of the computed AEC. This implementation
yielded more optimistic eRange results, with slightly higher
values than the “basic” approach and thus easing drivers
anxiety.

In detail, the “basic” algorithm computes the eRange

through the combination of the EV model’s characteristics
provided by the vehicle’s manufacturer such as:

• the FBE, which is the maximum charge the EV battery
can store;

• the AEC, which depends on the air-conditioner AcS
and the commute type (highway or city driving).

It also requires the SoC value, at the time of the eRange
computation. Thus, the eRange is computed by

eRange(AcS,AEC) =
FBE

AEC(AcS)
× SoC [km]. (1)

Figure 2 shows the block diagram of this approach.
The “history-based” method for eRange computation [22]

is depicted in Figure 3. An adaptive version of this method
was introduced in [19]. It relies on the FBE, SoC, and
instant energy consumption (IEC) parameters, to compute
each minute an adaptive value for AEC. So, the eRange for
the k minute is computed by

eRange(k) =

⌊
FBE∑N−1

i=0 wi ×AECA(k − i− 1)
× SoC(k)

⌋
,

(2)
where ⌊.⌋ is the floor operator, N is the number of past

minutes of an observation moving window and wi are the
predefined weights to the moving average computation of
each minute’s adaptive AEC (AECA). We assign exponen-
tially lower weights to the least recent AEC values

wi =
1

2(i+1)
, i ∈ {0, . . . , N − 1} . (3)

This algorithm requires three additional parameters: the
delta energy step, ∆S, the manufacturer constant AEC,

Fig. 2. “Basic” range estimation approach [22].

D. Albuquerque et al. | i-ETC, Vol. 9, n. 1 (2023) ID-1

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers   http://journals.isel.pt



Fig. 3. “History-based” range estimation approach [22].

AECC , and the minimum instance energy. The ∆S repre-
sents the amount of energy the AECA increment/decrement
at each k minute. It is used to compute AECA(k) according
to

AECA(k) =

 AECC , k <= N
AECA(k − 1)−∆S, AECma(k) < 0
AECA(k − 1) + ∆S, AECma(k) > 0.

(4)
by adding or subtracting ∆S to the previous AECA calcu-
lation of the previous k−1 minute. Initially, AECA is equal
to the pre-configured AECC , until it is possible to calculate
the moving average with minimum number of N samples.
In this equation, AECma represents the moving average of
the current k minute IEC values, where every non-zero IEC
value is averaged for its calculation.

The minimum instance energy’s role is to prevent the
algorithm from performing an eRange calculation when the
average IEC values for the current k minute are less than
a predefined threshold value. In case the vehicle consumes
negligible power, it would not cause an ∆S decrement or
increment on the eRange, thus preventing inaccurate eRange
values.

The “history-based” algorithm is an improvement yielding
slightly optimistic values than the “basic” approach, because
it is adapted to the vehicle current usage.

C. The use of machine learning techniques

The use of ML techniques for a multitude of cases [12] in
fields such as big data [17], [48], and data mining [14] has
proven its robustness on solving different problems.

As a result, some approaches for the eRange esti-
mation problem have resort to supervised learning tech-
niques. The use of decision trees (DT) [11], random for-
est (RF) [15], and K-nearest-neighbor (KNN) [10], [11]
in ensemble stacked generalization (ESG) approach [40],
through the JARI dataset [40] has shown a better pre-
diction than its individual base models. Recent models
using gradient boosted regression tree (GBRT) [25] have
combined extreme gradient boosting (XGBoost), available
at https://github.com/dmlc/xgboost and light
gradient boosted machine (LightGBM), from https://
github.com/microsoft/LightGBM to provide better
predictive performance from these ensemble methods [46]
with the NDANEV dataset. The approach classified four

driving patterns from three parameters (speed, motor current,
and change rate of motor current), through k-means cluster-
ing algorithm [13] and thus influencing the resulting eRange
due to their different energy consumption rates [7].

Approaches using unsupervised clustering of self-
organizing maps (SOM) [27] have been used for clustering
big data into driving patterns, prior to range estimation [28].
The hybrid version of SOM with regression tree (RT) [25]
has taken advantage of SOM neurons storage feature of
nearing related neighbor information being kept closely
together. Avoiding bushy trees and improving upon previous
solutions by keeping meaningful knowledge extraction on
bushy trees [47] both approaches used different datasets from
undisclosed monitored data sources.

Reinforcement learning in the form of neural network
(NN) [26] has also been used for external energies distur-
bances on the speed profile of a driving profile so that it could
then be combined with multiple linear regression (MLR) for
the estimation [20], using EVteclab’s dataset.

III. MACHINE LEARNING APPROACH

In this Section, we detail the proposed approach followed
in this work. Figure 4 depicts the generic diagram of the
approach in which we highlight that the ultimate goal is to
compute the eRange from the data in the input dataset, using
ML techniques.

Dataset

Vehicle power

consumption [kW]

Vehicle speed

[km/h]

Battery SoC
Estimation

Machine Learning
Range


Estimation

Remaining

Range [km]

Fig. 4. Generic approach to compute the eRange value expressed in
kilometers.

Figure 5 provides more details on the methodology steps
that we have taken, dealing with datasets and the evaluation
of the ML techniques. These steps are described in the
following subsections.

A. Dataset construction and preparation

In some fields of ML use, we have many available ready-
to-use datasets with full data. However, in this recent field of
research about eRange computation, it is not straightforward
to have such datasets. Thus, we need a dataset construction
and preprocessing phase for this problem. In this work,
a dataset was created from data with personally recorded
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Fig. 5. The detailed steps of the proposed approach using ML to compute
the eRange, from an EV dataset.

vehicle trips, as well as external existing and publicly avail-
able datasets from both the VED [33] and ChargeCar [1]
datasets, integrated into the work dataset. The resulting
dataset contains multiple trips with their respective vehicle
power consumption (expressed in kW) and the vehicle speed
(in km/h) in a time series format.

The composed dataset is used to train the selected eRange
forecasting models on the learning phase through ML. Fig-
ure 6 depicts the dataset construction and composition for
this work.

VED

Dataset

ChargeCar

Dataset

Classic EV X Project
Driving Range Prediction


Dataset

EV X Driving
 Range Prediction


Dataset

Fig. 6. The dataset construction and preparation for this work.

The key reasons for building such a dataset are as follows.
When training a ML model for regression problems, the ac-
curacy of the results on test data depends on the diversity of
the data. To ensure model effectiveness on different vehicles
and to avoid over-fitting, we opted for a diverse EV model
dataset built from existing available datasets mentioned in
Section II-A.

The algorithm integrates EV trip datasets for training, thus
requiring EV trips time-series with the following features:
SoC (in percentage), power consumption (in kW/h), distance
(in km) and speed (in km/h). We also have vehicle infor-
mation: AEC (kWh), FBE (kWh), and FBD (km). For this
reason, both VED and ChargeCar datasets [1] were chosen.

When configuring the algorithm’s training, different
datasets can be selected, as well as a minimum trip type and
minimum driving time, as these variables have been tested
and found to highly influence ML methods performance.
On the preprocessing phase, some features such as AEC,
FBE, and FBD are sometimes missing on certain datasets.

These, however, can be computed from existing static EV
datasets such as [3]. Other features such as power variation
and distance, are trip dependent, being computed as follows.
The ∆P metric measures the power consumption variation
between the previous i trip instant and the next f , using the
DC power formula of current A times voltage V ,

∆P = Pf − Pi = Vf ×Af − Vi ×Ai. (5)

The acceleration a is needed to calculate the distance feature
of the dataset. It is computed as the difference of the two
trip instant velocity, v, values divided by the elapsed time
∆t

a =
vf − vi
∆t

. (6)

For the distance ∆D computation, we use the previously
computed acceleration a between trip instants and apply it
to the initial velocity for the time variation, yielding

∆D = vi ×∆t+
1

2
× a×∆t2. (7)

The driver’s driving patterns dataset feature are clustered
from acceleration, battery current and change rate of motor
current with SOM, as shown by [46].

B. Learning the models

The target (expected) eRange values are provided by an
implementation of an eRange estimation with the adaptive
“history-based” algorithm, decribed in Section II-B. From
the features of the dataset, we apply this approach to compute
the target eRange values yi. This approach addresses real-
time AEC values, that relies on vehicle’s past N = 10 minute
window of the trip’s energy consumption history as well as
the real-time SoC value.

After training the ML algorithms with the dataset, the
estimation phase performs the eRange forecasting on live
SoC monitoring of a driving EV. The resulting prediction is
then used for the computation of the evaluation metrics to
compare against other algorithms. The application features
training configurations such as dataset feature configuration,
minimum trip time and trip minimum time step, also pro-
vide execution configurations, as prediction algorithms and
evaluation methods.

C. Regression techniques

We have considered the following regression techniques:
• linear regression (LR) [25];
• ensemble stacked generalization (ESG) [40].
The ESG algorithm follows the Wolpert stacking tech-

nique [42], combining two models. The first one, named as
base-model (Level-0) encompasses DT, RF, and KNN clas-
sifiers. The second model (Level-1) is AdaBoost, combining
base model predictions to provide a single output. Figure 7
depicts the ESG model, which follows the original [40] im-
plementation with some differences. The original application
was the EV energy consumption prediction and not eRange.
Moreover, the lack of availability of its JARI dataset could
make this implementation’s accuracy differ when training
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Features

Fig. 7. Ensemble Stacked Generalization (ESG) model [40].

with our dataset. After the training of these ML algorithms,
they are used for the prediction of eRange through real-time
parameters. One of the predictors is then selected based on
its performance with standard metrics. Then, it can be used
for future execution in a real-time trip.

An additional ESG implementation named ESG V2 was
derived from the original ESG approach, with the same
underlying ML algorithms, but changing some configurations
to better fit the project’s constructed dataset. The maximum
number of features configured for DT and RF algorithms are
9 and 7, respectively. As for KNN, K is configured at 70,
the distance metric is minkowski with parameter p set to 1.

D. Software platforms and programming languages

The software developed in this work was written in Python
with the standard ML packages. The Python application was
developed and published online [4], easing further academic
research involving EV driving datasets and machine learning
usage. The code is able to configure the EV X DRP dataset
for training the ML algorithms, controlling the minimum
time interval to reduce training bias, caused by trips with
lower duration. The focus of the software is to allow the
comparison of existing eRange prediction models with the
project’s implemented model. For this reason, two additional
prediction models (besides “basic” and “history based” from
[19]) were integrated into the application.

The software allows for algorithm training and trip execu-
tion customization settings. The selection of enabled eRange
computation algorithms for training allows multi algorithm
comparison for the same test trip. Some limitations exist
when using the Classic EV X Project Driving Range Predic-
tion eRange computation algorithms for ML training. Both
algorithms require the EV models AEC and FBE provided
by the manufacturer, limiting the training to datasets that
do provide this data, effectively excluding datasets such as
NDANEV.

Moreover, from this work, a Python application was devel-
oped, aiming for a future integration with the Classic EMini
X [18] project which aims to transform a 1993 Rover Mini

Cooper 1.3i (1300cc) into a fully EV. The vehicle could then
request a new eRange estimation with real-time battery and
road information through the existing eMini project software,
as depicted in Figure 8.

IV. EXPERIMENTAL EVALUATION

In this Section, we report on the experimental evaluation
of our approach. First, we present the evaluation metrics
considered in this work. Then, we report on experimental
results on the built dataset.

A. Standard evaluation metrics

Since prediction accuracy must be assessed for each eRange
forecasting algorithm, five standard evaluation metrics were
chosen for this task. We describe these metrics in the
following. The mean absolute error (MAE) is defined as

MAE(yi, ŷi) =
1

n

n∑
i=1

|yi − ŷi|, (8)

where yi represents the (real) observed value, ŷi is the
predicted value, and n is the target vector length. MAE is
the average of the absolute difference between the actual and
the predicted values.

The mean squared error (MSE) is the average of the
square of the difference between the actual and predicted
values,

MSE(yi, ŷi) =
1

n

n∑
i=1

(yi − ŷi)
2. (9)

It is sensitive to both bias and variance of the residuals,
averaging the squared difference between the original and
predicted values.

The mean absolute percentage error (MAPE) conveys
roughly the same information as MAE. However, it makes
more clear to compare between models due to the normal-
ization by the yi value,

MAPE(yi, ŷi) =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%. (10)

Unfortunately, this formula may lead to numeric problems
due to the division by zero situation. One must take actions
to prevent this problem, when using MAPE.

The root mean squared error (RMSE) measures the stan-
dard deviation of residuals with the square root of MSE,
defined by

RMSE(yi, ŷi) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (11)

The R2 metric is the coefficient of determination, with the
best possible score being 1.0 and it can take negative values,
as opposed to all previous metrics mentioned before in this
section. It is defined by

R2(yi, ŷi) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
, (12)
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Fig. 8. EV X Driving Range project block diagram with future integration of the Python application.

with ȳi denoting the average (expected) value of yi. It
represents the proportion of the variance in the dependent
variable. As opposed to the other evaluation metrics, for
which lower values are perceived as better, in the case of
R2 higher values are desirable. For this measure, lower
values may indicate the prevalence of redundant or irrelevant
variables.

B. Experimental results

The training and execution of the algorithms was done on a
computer with the Manjaro Linux operating system, 5.18.19-
3-MANJARO kernel, a AMD Ryzen 9 3900X CPU, and 48
Gb of RAM. The Python runtime is version 3.9 using Jet-
brain’s Pycharm as the integrated development environment
(IDE).
The application displays different eRange computed results
for the selected trip and prediction algorithms, allowing for
an easy overview of the different dataset parameters, making
the initial input dataset configuration to depend on multiple
datasets.

A conventional 47 minutes trip from the VED dataset [33]
for a 2013 Nissan Leaf model was run with a minimum trip
time of 10 minutes and a minimum timestamp of 0 seconds.

1) Execution trip parameters: Figure 9 shows the trip pa-
rameters SoC, Speed, and IEC, respectively. In these graphs,
we observe a connection between these indicators (SoC,
Speed, and IEC). The SoC is globally a time-decreasing
function, as expected. The rate of decrease depends on the
speed of the vehicle. IEC is proportional to the speed of the
EV and sometimes it takes negative values, which correspond

to the regenerative braking instants. Moreover, when speed
is zero, the value of IEC is also zero. We notice a clear

Fig. 9. Execution trip parameters. Evolution of the State of Charge (SoC,
in %), speed (in km/h), and Instantaneous Energy Consumption (IEC, in
kWh per 100 km), as a function of the trip time.
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decrease on the IEC values on the time window from 12 to 20
minutes. After the 20 minutes time point, the EV moves with
low speed and the value of IEC increases slowly assuming
small positive values.

2) Evaluation with 10 minutes minimum trip time: The
comparison of the four eRange prediction models is depicted
in Figure 10. The training data is composed by trips that
have at least 10 minutes of duration. The trips were filtered
by the time it took for each trip to complete, before being
selected for training. We report the experimental results of
the “history-based” approach (in red), ESG (in green), ESG
V2 (in light blue) and the LR approach (in purple). On the
“history-based” approach, we use Equation (4) to compute
the AECA(k); on the first 10 minutes, we have AECA(k) =
AECC .

Fig. 10. eRange computation by the four algorithms (minimum 10 min
trip time for training).

The “history-based” approach shows an increase in
eRange when regenerative breaking is charging the battery
and “plateau” sections when the minimum instance energy is
not enough to trigger a recalculation for the eRange. These
sections have been smoothed by the LR algorithm, which
shows a smooth evolution on the forecasted values. The
LR algorithm improves on the “history-based” approach that
exhibits a “staircase effect”, which may cause anxiety on the
driver, each time the estimated value drops in a step. On the
one hand, LR seems to be the best ML approach for this
problem. On the other hand, the ESG algorithm provides
a more optimistic estimate, yielding larger eRange values.
One possible cause for this performance may be the missing
original dataset training features such as elevation, however
the R2 value also indicates poor fitting between the selected
dataset features and the prediction value.

Figure 11 shows the behavior of the “basic” and “history-
based” approaches, for the eRange estimation. These two
approaches provide similar estimates of the eRange values.
On the 12 minutes to 20 minutes time window, the “history-
based” approach provides a stable and constant estimation.
The “basic” counterpart provides a decreasing estimate on
this time window.

Fig. 11. Basic and History-Based approaches for eRange computation.

We now report on the experimental results of the LR, ESG
and ESG V2 approaches in Figure 12. Again, we consider
only trips with less than 10 minutes. Both algorithms exhibit
the decreasing trend with LR providing a smoother predic-
tion evolution. The ESG method, due to being a stacking
technique, provides estimates with larger deviation. These
estimates can be smoothed with a moving-average filter [34],
[35]. The ESG shows less deviation from the baseline,
however it still struggles with the selected testing trip eRange
forecasting.

The evaluation metrics, described in Section IV-A, for this
experiment with LR and ESG are reported in Table II.

TABLE II
LR AND ESG PERFORMANCE METRICS WITH MINIMUM 10 MINUTES

TRIP TIME. THE BEST RESULT IS IN BOLD FACE.

ML approach MAE MSE MAPE RMSE R2

LR 0.597 0.603 0.012 0.776 0.985
ESG 2.317 12.135 0.047 3.483 0.689
ESG V2 1.519 3.650 0.029 1.910 0.906

3) Evaluation without minimum trip time: We now report
the experimental results of the training with trips without
minimum duration. Figure 13 shows the experimental results
of the four algorithms herein considered. Figure 14 depicts
the individual results for the LR, ESG, and ESG V2 algo-
rithms, respectively.

The experimental results of the LR algorithm are a close
approximation to the target (“history-based” approach), de-
picted in Figure 11. These results are in accordance with
the evolution of the IEC value, as reported in Figure 9. The
evaluation metrics for this experiment with LR and ESG are
reported in Table III.

These experimental results show that eRange computation
can be achieved with ML techniques, overcoming the exist-
ing “basic” and “history-based” approaches. By comparing
the results in Table II and Table III, we conclude also that
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Fig. 12. LR, ESG, and ESG V2 approaches for eRange computation
(minimum 10 min trip time for training).

Fig. 13. eRange computation by the four algorithms (no minimum trip
time for training).

the training with trips with no minimum duration improve
on the forecasting, since we attain better results in this case,
however training time on ESG models differ extensively, as
reported in Tables V and VI.

When testing for other trips through the 20-Fold Cross
Validation method, we can observe that ESG and ESG V2

Fig. 14. LR, ESG, and ESG V2 approaches for eRange computation (no
minimum trip time for training).

TABLE III
LR AND ESG PERFORMANCE METRICS WITH NO MINIMUM TRIP TIME.

THE BEST RESULT IS IN BOLD FACE.

ML approach MAE MSE MAPE RMSE R2

LR 0.696 1.077 0.483 0.984 0.997
ESG 1.687 5.833 1.319 2.288 0.987
ESG V2 1.339 3.343 1.051 1.778 0.991

improve significantly their metrics, as depicted on Table IV.
This highlights that ensemble methods that resort to DT sig-
nificantly benefit from training and testing data similarities,
as testing with smaller trips provides better results due to the
higher count of smaller trips found in the dataset.

4) Running time analysis: We have performed a running
time analysis of the training of the ML approaches. We have
provided different versions of the training data with different
minimum trip times, and then we train the ESG, ESG V2,
and LR approaches. Table V reports the training time for
every train trip that was used for testing the selected trip,
while Table VI reports on the training for the 20-Fold Cross
Validation.
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TABLE IV
LR AND ESG CROSS VALIDATION METRICS FOR ALL MINIMUM TRIP

TIMES (MTT). THE BEST RESULT IS IN BOLD FACE.

ML approach MTT MAE MSE MAPE RMSE R2

LR 0m 0.539 0.725 0.341 0.807 0.998
ESG 0m 1.479 4.724 1.156 2.106 0.991
ESG V2 0m 1.279 2.996 1.106 1.677 0.994
LR 10m 0.696 1.077 0.483 0.984 0.997
ESG 10m 1.687 5.833 1.319 2.288 0.987
ESG V2 10m 1.339 3.343 1.051 1.778 0.991

TABLE V
THE EFFECT OF THE MTT CONSTRAINT ON ML TRAINING TIME WITH

THE DATASET AND TESTING TIME WITH SELECTED TRIP FOR ESG
ORIGINAL PAPER CONFIGURATION [40]; ESG V2 ADJUSTED FOR

DATASET CONFIGURATION AND LR (PURPLE LINE).

ML MTT Trip count Train time Avg test time All test time
LR 0m 503 138ms 0ms 4,223ms
ESG 0m 503 7m 25s 772ms 9ms 45s 020ms
ESG V2 0m 503 14m 10s 940ms 9ms 45s 300ms
LR 10m 159 72ms 0ms 4s 129ms
ESG 10m 159 4m 2s 146ms 9ms 44s 150ms
ESG V2 10m 159 7m 37s 998ms 9ms 44s 308ms

For both techniques, we observe as expected, the decrease
in the training time as the minimum trip duration increases.
The key reason is that the number of trips available for train-
ing decreases, as the minimum duration increases. The LR
approach presents very fast training and achieves adequate
results with a smooth varying curve on the prediction values.
Although the ESG V2 technique performs relatively better
than ESG, the approach needs to be further explored and its
parameters need to be fine-tuned.

V. CONCLUSIONS

The electric vehicle remaining driving distance estimation
is a relevant problem, since this estimate relieves the driver
anxiety on a trip and allows for a better trip planning. There
are some useful statistical approaches to perform this esti-
mation. However, these techniques provide an estimate with
some degree of error. The use of machine learning techniques
to provide this estimation has been proven adequate, despite
the fact that this a recent field of study. There are some public
domain datasets with electric vehicle data, but their use is
not straightforward, requiring a demanding construction and
pre-processing stage to have a reliable dataset with accurate
and complete trip data.

In this paper, we have composed such a dataset in which
we have assessed the use of regression techniques to estimate
the remaining driving range distance, based on different
variables with vehicle data and trip data. We have compared
the prediction accuracy of these techniques with standard
metrics and found that linear regression shows promising
prediction results as well as fast training. The ensemble
stacked generalization V2 algorithm has shown better pre-
dictions than ensemble stacked generalization, but still both
would benefit from the existence of long trip representation
on the dataset. The performance of these algorithms seem to
be very dependent on the dataset. The experimental results

TABLE VI
THE EFFECT OF THE MTT CONSTRAINT ON ML TRAINING WITH

20-FOLD CROSS VALIDATION FOR ESG ORIGINAL PAPER

CONFIGURATION [40]; ESG V2 ADJUSTED FOR DATASET

CONFIGURATION AND LR (PURPLE LINE).

ML MTT Trip count All folds train time Avg fold train time
LR 0m 503 30s 064ms 1s 503ms
ESG 0m 503 4h 3m 54s 919ms 12m 11s 745ms
ESG V2 0m 503 6h 50m 52s 398ms 20m 32s 619ms
LR 10m 159 14s 543ms 727ms
ESG 10m 159 1h 57m 29s 701ms 5m 52s 485ms
ESG V2 10m 159 3h 22m 59s 269ms 10m 08s 963ms

have also shown the impact of different datasets and training
configurations, on existing machine learning models.

As future work, we plan to perform the integration of the
developed application with the real-time data of the electric
vehicle to continuously provide updated eRange estimations.
We also plan to include more datasets and features, such
as driving pattern, road elevation and traffic data. Moreover,
additional machine learning techniques can be added to the
established open source experimental setting.
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