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Abstract: In text classification based on thebag-of-words(BoW) or similar representations, we usually have a large
number of features, many of which are irrelevant (or even detrimental) for classification tasks. Recent results
show thatcompressed learning(CL), i.e., learning in a domain of reduced dimensionality obtained byrandom
projections(RP), is possible, and theoretical bounds on the test set error rate have been shown. In this work, we
assess the performance of CL, based on RP of BoW representations for text classification. Our experimental
results show that CL significantly reduces the number of features and the training time, while simultaneously
improving the classification accuracy. Rather than the mild decrease in accuracy upper bounded by the theory,
we actually find an increase of accuracy. Our approach is further compared against two techniques, namely
the unsupervised random subspaces method and the supervised Fisher index. The CL approach is suited for
unsupervised or semi-supervised learning, without any modification, since it does not use the class labels.

1 INTRODUCTION

The need forfeature selection(FS) and/orfeature
reduction(FR) arises in many machine learning and
pattern recognition problems [1]. On large datasets
(in terms of dimension and/or number of samples),
the use of search-based or wrapper techniques can be
computationally prohibitive.

For instance, in text classification based on
the bag-of-words(BoW) or similar representations
(where texts are represented by high dimensional vec-
tors with the frequencies of a set of terms in each text)
we usually have a large number of features, many of
which are irrelevant (or even harmful) for the clas-
sification task in hand. In this context, FS and FR
play important roles in reducing the number of fea-
tures. The use of FS or FR techniques may improve
the accuracy of a classifier (avoiding the “curse of di-
mensionality”) and speeds up the training process [1].
The literature on FS and FR is too vast to be reviewed
here. Comprehensive coverage of these techniques,
and pointers to a vast literature, can be found in sev-
eral books, namely [1], [2], [3], and [4].

1.1 Compressed Learning

In the past decade, there has been some interest in
random projections (RP, see [5, 6, 7] and references
therein) for FR. Recently, theoretic support for RP-
based FR (termedcompressed learning– CL) was
provided in [8]. CL is inspired by thecompressed
sensing(CS) [9, 10] framework, in which an RP ma-
trix is used to map from the data domain to the mea-
surement domain. The theory of CS provides con-
ditions (on the projection matrix and the level of
sparseness of the data vectors) under which this (non-
injective) mapping can be inverted. Some CS-based
techniques for classification, based on RP, have been
proposed [11]. Recently, it was shown thatcom-
pressed learning(CL) is possible [8]; specifically, it
was proved that learning in the compressed domain
is guaranteed to be, in the worst case, only slightly
worse than learning on the original data domain, if
the RP matrix satisfies some conditions and the fea-
ture vectors are sparse (possibly on some unknown
basis). Since BoW representations are usually very
sparse, text classification using this type of represen-
tation seems like an obvious candidate for CL.
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1.2 Our Contribution

In this work, we assess CL for BoW-based text classi-
fication using linearsupport vector machines(SVM)
and several types of RP matrices. SVM have been
found very effective for BoW-based text classifica-
tion [12]. As shown in our experimental results, the
classifiers obtained via CL, on significantly reduced
dimensions, exhibit improved classification accuracy
with respect to the classifiers trained on the original
features. These results suggest that (for this type of
data) the bound for CL given in [8] is pessimistic: in-
stead of the mild decrease in accuracy upper bounded
by the theory in [8], we actually find an increase of
accuracy.

The remaining text is organized as follows. Sec-
tion 2 briefly reviews the main results of CL theory
and RP-based FR techniques. Some FR and FS tech-
niques, used for benchmark purposes are described in
Section 3. The experimental setup and the experimen-
tal results are described in Section 4. Section 5 ends
the paper with some concluding remarks.

2 COMPRESSED LEARNING

2.1 Projection-Based Dimension
Reduction

Let D = {(x1,c1), ...,(xp,cp)} be a labeled dataset,
wherexi ∈R

n denotes thei-th feature vector andci ∈
{−1,+1} is its class label. LettingA be anm× n
matrix, with m< n, we obtain areduced/compressed
training datasetDA = {(y1,c1), ...,(yp,cp)} via

yi = Axi . (1)

Each new feature (component ofy = Ax) is a lin-
ear combination of the original features. Many tech-
niques have been proposed to obtain “good” (in some
sense) projection matrices.

In the case ofrandom projections(RP), the entries
of A are randomly generated. For reasons explained
below, the following distributions yield good RP ma-
trices:

• (i) GaussianN (0,1/
√

m);

• (ii) Bernoulli over±1/
√

mwith equal probability;

• (iii) probability mass function{1/6, 2/3, 1/6}
over{−

√

3/m,0,
√

3/m}, proposed by Achliop-
tas [5];

• (iv) probability mass function {1/(2s),1 −
1/s,1/(2s)}over{−

√

s/m,0,
√

s/m},proposed
by Li et al [7].

Notice that the Bernoulli and Achlioptas matrices
are particular cases of (iv), withs= 1 ands= 3, re-
spectively. Choices (iii) and (iv) lead to sparseA,
which may be interesting from a computational point
of view.

2.2 Restricted Isometry Properties

The use of RP is inspired by the Johnson-
Lindenstrauss lemma [13, 14], which states that,
under some conditions, a set of points in a high-
dimensional space can be mapped down to a much
lower dimensional space, such that the Euclidean dis-
tances between these points are approximately pre-
served. A closely related concept is that ofrestricted
isometry property(RIP) [9, 10, 13]: am×n matrix is
said to satisfy the(k,ε)-RIP if for anyk-sparse vector
x (up tok non-zeros),

(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1+ ε)‖x‖2, (2)

where‖ · ‖ is the `2 norm. The random generation
procedures described in Subsection 2.1 are known to
yield matrices satisfying the RIP with smallε, with
overwhelming probability, if

m= Ω(k log(n/k)), (3)

that is,m is a (small) factor ofΩ and needs to grow
only logarithmically with the dimensionality of the in-
put patternsn.

As is well-known, linear SVM classifiers use only
inner products between training patterns. It is thus
clear that a good RP matrix should preserve these
inner products, a stronger requirement than the RIP.
The generalized RIP(GRIP) gives conditions under
which the inner products are approximately preserved
[8] (see also [15]).

Lemma 1 ([8]) : Let A∈R
m×n be a matrix satisfying

the (2k,ε)-RIP andx and x′ be two k-sparse vectors
such that‖x‖,‖x′‖ ≤ R. Then, lettingy = Ax and
y′ = Ax′,

(1+ ε)xTx′−2R2ε ≤ yTy′ ≤ (1− ε)xTx′+2R2ε

This lemma suggests that, if the training patterns
are k-sparse andA satisfies the(2k,ε)-RIP, a linear
SVM learnt from the compressed patternsY will be
very similar to one obtained from the original patterns
X, as formalized in the compressed learning bound
shown in [8]. The following subsection details the
compressed learning bound which is the main moti-
vation for this work.
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2.3 Compressed Learning Bound

Theorem 1 ([8]) : Let w0 be the best linear classi-
fier in the original data domain, with low expected
hinge loss H(w0) =ED

[

1−cwT
0 x
]

, where the expec-
tation is with respect to an unknown distributionD
from which the training set D is assumed to have been
generated. LetzA be the soft-margin SVM trained on
the compressed dataset DA. Then, with probability
1−2η,

H(zA)≤ H(w0)+O





√

√

√

√‖w0‖2

(

R2ε+
log 1

η

p

)



 ,

(4)
where R is as defined in Lemma 1.

This theorem shows that the SVM obtained from
the compressed data is never much worse than the
best linear classifier in the original high dimensional
space.

3 FEATURE REDUCTION AND
SELECTION

This section presents some FR and FS techniques,
used as benchmark for comparison purposes with the
RP-based techniques.

3.1 Random Subspaces

The (unsupervised)random subspaces method
(RSM) [16] acts by (pseudo) randomly selecting
subsets of components of the feature vector, that
is, it choosing axes-aligned random subspaces. A
multivariate approach for FS based on RSM has
been proposed [17]. The authors apply a multivariate
search technique on a randomly selected subspace
from the original feature space, to better handle
the noise in the data on the reduced dimensionality
domain. This procedure is repeated many times and
theq chosen feature subsets are combined into a final
list of selected features, used to train some classifier.

3.2 Fisher ratio

The well-known (supervised)Fisher ratio (FiR) for
binary problems (e.g., whereci ∈ {0,1}) of each fea-
ture is defined as

FiRi =

∣

∣

∣
X
(0)
i −X

(1)
i

∣

∣

∣

√

var(Xi)(0)+var(Xi)(1)
, (5)

whereX
(0)
i , X

(1)
i , var(Xi)

(0), and var(Xi)
(1), are the

sample means and variances of featurei, for the pat-
terns of each class. The FiR measures how well each
feature alone separates the two classes [18].

4 EXPERIMENTS

In this paper, we report a set of experiments on
CL for text classification based on BoW representa-
tions. As mentioned above, BoW representations are
usually very sparse, thus being in favorable conditions
for the applicability of CL via (1).

4.1 Experimental Setup

We consider the four RP matrices described in Sub-
section 2.1, which we will refer to as: Gaussian,
Bernoulli, Achlioptas, and Li et al (withs = n).
We use linear SVM classifiers, provided by the EN-
TOOL1 toolbox, trained up to 20000 iterations. Each
input pattern is normalized to unitary`2 norm (origi-
nal domain).

We have used the following four (publicly avail-
able) BoW datasets: Example12, Example22, Dex-
ter3, and SpamBase4.

These datasets have undergone the standard pre-
processing (stop-word removal, stemming). Table 1
shows the main characteristics of these datasets,as
discussed in Sub-sections 2.2 and 2.3 [8]:

• k̄ is the averagè0 norm of each pattern;

• m̂R is an estimate ofm to satisfy the(k,ε)-RIP
condition, given by ˆmR = Ω(k̄ log(n/k̄));

• m̂G is an estimation ofm to satisfy the(2k,ε)-RIP
condition, given by ˆmG = Ω(2k̄ log(n/(2̄k))).

In the case of Example1, each pattern is a 9947-
dimensional BoW vector. The classifier is trained
on a random subset of 1000 patterns (500 per class)
and tested on 600 patterns (300 per class). On Ex-
ample2 dataset, we have 9930-dimensional BoW vec-
tors, with only 10 training patterns.

The Dexter dataset has the same data as Exam-
ple1 with 10053 additional distractor features with no
predictive power at random locations, and was cre-
ated for the NIPS 2003 feature selection challenge5.
We train with a random subset of 200 patterns (100
per class) and evaluate on the validation set, since the

1zti.if.uj.edu.pl/ ˜ merkwirth/entool.htm
2download.joachims.org/svm_light/examples
3archive.ics.uci.edu/ml/datasets/dexter
4archive.ics.uci.edu/ml/datasets/SpamBasebase
5www.nipsfsc.ecs.soton.ac.uk
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Table 1: Example1, Example2, Dexter, and SpamBase datasets main characteristics.̄k is the averagè0 norm of each pattern.
m̂R andm̂G are the estimates ofm to satisfy the(k,ε)-RIP and the(2k,ε)-RIP conditions, respectively.

Dataset, n Subset Patterns (+1,-1) k̄,m̂R,m̂G

Example1, 9947 Train 2000 (1000,1000) 47.1 , 253, 436
Test 600 (300,300) 39.5 , 219, 383

Example2, 9930 Train 10 (5,5) 46.6 , 247, 429
Test 600 (300,300) 39.4 , 216, 376

Dexter, 20000 Train 300 (150,150) 94.1 , 505, 878
Test 2000 (1000,1000) 96.2 , 514, 894
Valid. 300 (150,150) 93.1 , 501, 872

SpamBase, 54 – 4601 (1813,2788) 9.8 , 17, 20

labels for the test set are not publicly available; the
results on the validation set correlate well with the re-
sults on the test set. The task of both Example1 and
Dexter is learn to classify Reuters articles as being
about “corporate acquisitions” or not.

In the SpamBase dataset, we have used the first 54
features, which constitute a BoW. We have randomly
selected 1000 patterns for training (500 per class) and
1000 (500 per class) for testing. The SpamBase task
is to classify email messages as SPAM or non-SPAM.

A collection of BoW documents is usually repre-
sented by theterm-document(TD) [19] matrix whose
columns hold the BoW representation for each docu-
ment whereas its rows correspond to the terms in the
collection.

The reported results are averages over 10 replica-
tions of different training/testing partition and random
matrices, except on the Example2 dataset in which we
make no partition (the dataset has only 10 patterns).

To serve as a benchmark, we compare with both
the unsupervised RSM and supervised Fisher Index
procedures, described in Sub-section 3.

4.2 Test Set Error Rate

Figure 1 and Figure 2 show the average test set er-
ror rates (over 10 replications) for the Example1 and
Example2 datasets, as functions of the number of fea-
turesm. The horizontal dashed blue line corresponds
to the classifiers trained on the original data. Figure 3
shows the error rate on the validation set, for the Dex-
ter dataset. Finally, in order to assess the performance
on lower dimensional sparse datasets, we compute the
test set error rate on the SpamBase dataset; Figure 4
plots these results.

On the first three datasets we have an improve-
ment on the error rate, after FR with any of the four
probability distributions except for the Li et al. dis-
tribution on Example2. Typically Achlioptas distri-
bution leads to lower test set error rate than Gaussian
and Rademacher matrices, with about 1/3 non-zero
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Figure 1: Average test set error rates (ten runs with different
train/test partitions) for the Example1 dataset of the linear
SVM classifier for FR based on RP and FS with Fisher In-
dex.
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Figure 2: Average test set error rates (ten runs with different
train/test partitions) for the Example2 dataset of the linear
SVM classifier for FR based on RP and FS with Fisher In-
dex.
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Figure 3: Average validation set error rates (ten runs with
different train/test partitions) for the Dexter dataset of the
linear SVM classifier for FR based on RP and FS with
Fisher Index.
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Figure 4: Average test set error rates (ten runs with different
train/test partitions) for the SpamBase dataset of the linear
SVM classifier for FR based on RP and FS with Fisher In-
dex.

entries; the use of this distribution is efficient because
the input patterns are also sparse and most of the point
by point products can be avoided.

The upper bound for CL defined in (4) is conserva-
tive when applied to text classification problems. The
test set error rate on the reduced domain is below the
test set error rate on the original data domain. More-
over, an adequate value ofm to achieve lower test
set error than on the original domain is about 2 ˆmG to
5m̂G, as shown in Table 1. On the SpamBase dataset,
we get improvement with aboutm≥ 40.

On Figure 5 we compare the performance of RP-
based methods with the RSM method, combining

q = 20 different subspaces of features. We have the
average test set error rates for the Dexter dataset, as
functions of the number of featuresm. The horizon-
tal dashed blue line corresponds to the linear SVM
classifier trained on the original data withn features,
which we call the baseline error. The vertical line cor-
responds to themG estimate, that is, the smallest value
of m that satisfies the GRIP condition. The RP meth-
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Figure 5: Validation set error rates (average over 10 random
training/test partitions) for the Dexter dataset, with a linear
SVM classifier, as functions of the number of features, us-
ing random projections and random subspaces (withq=20
subspaces).

ods lead to features that are slightly better than those
obtained by RSM. As compared to the RSM method,
the RP method has the advantage to be faster, since it
involves solely a matrix multiplication.

4.3 Training Time Analysis

The reduction in the number of features leads to a
reduction of the training time. Table 2 shows how
the training time of the linear SVM varies with the
number of features for the high-dimensional Dexter
dataset. The decrease in the dimensionality of the
data leads to reasonable improvements on the train-
ing time.

Table 2: Analysis of the training time (in seconds) for the
Dexter dataset as a function of the number of featuresm,
using RP (average of ten runs with different training/test
partitions).

m Time [sec]
20000 3.16
5000 2.41
4000 1.99
3000 1.85
2000 1.81
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5 CONCLUSIONS

In this paper, we have reported a set of experi-
ments on compressed learning for text classification
based on (sparse) bag-of-words representations. The
compressed features are obtained by (sparse) random
projections. Our experimental results show that four
probability distributions (two of which are sparse) for
the random projection matrix significantly reduce the
number of features as well as the training time, while
also improving the classification accuracy.

We have found that the recently proved theoreti-
cal bound for the test error of compressed learning is
conservative; the test set error on the compressed do-
main is below the test set error on the original data
domain. The number of reduced dimensions can be
computed by a simple sparsity analysis of the train-
ing data, regardless of the label of each pattern. The
random projection technique performs slightly better
than the random subspaces method and the Fisher in-
dex technique, on high-dimensional datasets.

In future work, we will apply this technique to
semi-supervised text classification.
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