

BlueLab IoT, a Universal Software Platform for IoT Data Acquisition

Devices

Vitor Vaz da Silvaab,
aDepartment of Engineering of Electronics, Telecommunication and Computers,

ISEL/IPL - Instituto Superior de Engenharia de Lisboa, Portugal
bCTS-Uninova, Portugal
vsilva @ deetc.isel.ipl.pt

Abstract1— Physical devices with different sensors and

sampling rates distributed over several unrelated locations need

to store their values over time. Applications that need the result

of a set of sensors must access their data. A common and simple

interface within the physical devices, monitoring stations, to

store data on a database is needed; as also a simple and common

retrieval interface for any application that only shows the data

as it is or processes it into higher levels of significance. BlueLab

IoT is a platform with libraries and an interface application to

aid that development; a working implementation is provided.

Keywords: IoT, database, station, device, storage, monitoring

I. INTRODUCTION

The expected number of IoT (Internet of Things) connected
and accessed through the Internet is increasing day by day
[1]. The applications covered by these devices are very
diverse: simple fixed environmental sensors, home gadgets
and appliances, industry modules, and mobile devices like
wearables and transportation systems’ data. The ease with
which these devices can be bought and installed also
contributes to the increasing number of available IoTs
including the young developers, students, hackers and
curious self-learning individuals. The number of devices
which are independent of any enterprise or government will
increase likewise, and contribute to the Smart cities as shrubs
in a forest.

Hardware and software on the devices and software on the
server need a bridge that has to be built from both sides. This
may be a difficult task for developers that are only focused
on one of the sides of that bridge. To overcome that gap, this
work provides such a bridge with a library on each end. This
platform aims for data acquisition, monitoring, thus does not
allow, at this stage, the possibility of acting upon the devices,
even if there is an actuator on them.

The main purpose of this work is to build a universal
platform that is simple, for immediate usage with minimal
configuration; a plug and play type, which can also be used
as a tool to develop other more complex approaches [2].

II. ARCHITECTURE

The BlueLab IoT architecture for data acquisition devices
is presented in Figure 1. Each physical device can have

several sensors, and devices may differ among themselves.
These devices communicate either directly with the server or
they may communicate with a data gateway where after some
processing the result is forwarded, relayed, to the server
where it is stored. Each gateway can also be seen as a high
level sensor and the data that it sends to the server is stored
as if it had been collected by the gateway’s sensors. To use
the platform each device or gateway that communicates with
the server needs to create a session, which is done by a login
with password and, after a successful authentication, receives
a session id that must be used in all subsequent
communications. Each session can be limited in time and or
data volume, and when it expires a new connection must be
established. There are two databases: user and data; one for
user authentication and session validation and another where
the data is stored. Physical devices are called stations and
each data is stored as an entry. The database is implemented
with PostgreSQL [3]. Different users have different schemas,
i.e. each has its own database, this means that there is
independency of data; two different users can have stations
with the same station number.

 Figure 1 – BlueLab IoT structure.

A. User

A user must register itself into the platform by email and
password, where after a successful registration process can
use the system. The user must create an environment, which
is composed by all stations, and is the owner of that
environment.

i-ETC: ISEL Academic Journal of Electronics,
Telecommunications and Computers
IoT-2018 Issue, Vol. 4, n. 1 (2018) ID-4

http://journals.isel.pt

B. Station

A Station belongs to the user that created it and has a
unique sequential number that is associated with it during the
creation process where other information about the station is
also stored as for example the station’s unique number (e.g.:
mac address, imei, …), its latitude, longitude and height, a
name and a description. A set of privileges define a station,
delete protecting it, so that a specific station may or not be
deleted along with all its entries, or if a range of entries can
be deleted from that station.

C. Entry

The IoT data database’s entity-relation model is presented
in Figure 2. It is the schema of a single user.

Figure 2 – BlueLab IoT data database Entity Relationship model

Regarding the entry entity shown in Figure 2, a data entry
is a combination of a key-value pair, a key (kkey) and a value
(vvalue) that is associated with it (e.g.: “temp”, 12.3) and,
two date stamps, one indicating the time the sample was done
(t_stamp) and, the other the time the value was stored in the
database (db t stamp). These timestamps allow
synchronization of data between stations, and their retrieval.
Some stations, devices, may not have a real time clock (RTC)
and their timestamp might be measured from the last reset.
Different sensors may also have different sampling
frequencies, digital filtering and eventually a temporal
reference associated with it and stored as the t_stamp. An
entry is identified by its increasing sequential number
seq_num within a specific station. The sequence number is
used for several reasons: to reference all key value pairs to
the same sampling window time; as an acknowledge, as it is
used as a result of storing the data value pairs and avoid
repeating values if the device recovers from an error
condition.

III.STATION

Each device used in this project is composed by an
ESP8266-E12 embedded system with wifi [4], connected to
all or eventually some of the following set of sensors:
humidity, pressure and temperature sensor, BME280 [5], air
quality sensor MQ135 [18, 19], and Real Time Clock
DS3231. The sensors can also be switched off in each
module during configuration right after the reset of the
device. The software base is that of Arduino’s system [8].

The Arduino system has two top level functions, the setup()
and the loop(). The setup is meant to be executed only once,
and the loop is called repeatedly by the system.

Shown in Figure 3 is a detail of the setup code related to
the BlueLab IoT library. The code shown does not handle
error conditions, to make it easy to understand, and the
access to the wifi is also not shown. A real implementation
should handle error conditions, have a retry loop and

eventually make reset to the module if needed, as it is in the
complete code available in links shown further down.

The setup code example shown in Figure 3 involves the
creation of an object, dbConn, that handles all calls to the

IoT data database. A login is then necessary, with the user e-
mail and password, which corresponds to the registration
process, which had to be done previously, and is described
further down in the text. A successful login returns a session
id which is then used on subsequent calls using the dbConn

object. The actual sequence number is retrieved from the
database and incremented for the next frame to be sent.

Figure 3 – Detail of the setup code of a device

Although not necessary it is a good idea to store in the
database that the device has had a reset.

A frame with the reset condition, along with the time it
occurred, is stored in the IoT data database. Any value can be
associated with the “reset” key, for example indicating the
reason or error code. There is no difference between a “reset”
key and any other key (e.g. “abc213”) in the way it is
processed and stored.

After the setup process where all the device’s configuration
is made, the Arduino calls the loop() function repeatedly and
the associated code is where the data is acquired and sent to
the database.

A detail of that process is shown in the code of Figure 4,
where all sensors are acquired with the same rate. It is a very
simplistic approach and a real situation would preferably use

// create an object to access BlueLab

dbConn = new DataBaseConnection(

login_host, login_url,

data_host, data_url);

// login in

dbConn->login(usr_email, usr_password);

// get current sequence number

int seqNum=dbConn->getSeqNum(deviceId);

// prepare next frame’s sequence number

seqNum++;

// running the setup code means that

// a reset has occurred in the device

// store that information!

// ... get the time the reset occured

long long tStamp=util.epochMicroseconds();

// ... build the frame

dbConn->newFrame(deviceId, seqNum, tStamp);

// ... add the data to be stored

dbConn->addKeyValue("reset",0);

// ... send the frame

dbConn->sendFrame();

// prepare next frame’s sequence number

seqNum++;

V.Silva | i-ETC - IoT 2018, Vol. 4, n. 1 (2018) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

interrupts. In either case, only the data that is available with
the same timestamp (tStamp) should be on the same frame
because all key values will have the same sequence number.
On the other hand, if two different frames are sent with
different timestamps and with the same sequence number
they will be stored as long as the keys are different. This is
helpful when it is necessary to relate and synchronize
sampling events from sensors with different sampling times.

Figure 4 – Detail of the acquisition and storing code of a device

Each data value is identified by a key string and a value. To
store data with the same sequence number but different
timestamps it is necessary to build two different frames as
shown in Figure 5.

Figure 5 – key-value pairs with same sequence number but different

timestamps.

Devices need not be identical. The key-value pairs stored in

the database can be specific to each device. If for example
the same type of readings has to be made on a large area, it
makes sense that the key strings be identical, even if the
devices are not physically identical: i.e. two devices with
different hardware both reading temperatures, can use the
same key string “Temp”.

All calls are made through the https protocol by JSON
format posts.

A station is in fact a set of sensors and a communication

link to a database. So any other equivalent configuration can

also be considered as a station. This project also uses the

smartphone as a mobile station.

A. Mobile station

A smartphone has sensors that can be sampled and its
values sent to the BlueLab IoT, this is achieved by using the
same https calls as any other station. A simple application is
shown in Figure 6.

Figure 6 – Smartphone BlueLab Iot application showing a) login b) station

description c) light sensor ad d) GPS sensor

Figure 6 shows several sequences of the smartphone as a
BlueLab IoT station. After a successful login a) the station is
created automatically if it doesn’t exist and the user provides
some information that is shown b), right after logging in.
Then choosing the light sensor c) all light changes within a
certain threshold are sent to the database. By choosing the
GPS sensor d) a set of geospatial and speed information
changing within certain thresholds are also sent to the
database.

// New frame

dbConn->newFrame(deviceId, seqNum, tStamp);

dbConn->addKeyValue("pressure", press);

dbConn->addKeyValue("humi", humi);

// Send the frame

dbConn->sendFrame());

// new Timestamp

other =util.epochMicroseconds();

// New frame – same seqNum different tStamp

dbConn->newFrame(deviceId, seqNum, other);

dbConn->addKeyValue("temp", temp);

dbConn->addKeyValue("air", airQual);

// Send the frame

dbConn->sendFrame());

seqNum++;

// Get new values

float temp=bme.readTemperature();

int press=bme.readPressure();

float humi=bme.readHumidity();

int airQual=analogRead(sensorGas);

tStamp=util.epochMicroseconds();

// Build a new frame

dbConn->newFrame(deviceId, seqNum, tStamp);

// Add the values to the frame

dbConn->addKeyValue("pressure", press);

dbConn->addKeyValue("humi", humi);

dbConn->addKeyValue("temp", temp);

dbConn->addKeyValue("air", airQual);

// ... send the frame

dbConn->sendFrame();

// prepare next frame’s sequence number

seqNum++;

V.Silva | i-ETC - IoT 2018, Vol. 4, n. 1 (2018) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

IV.FUNCTIONS

Available functions for the hardware module can be
downloaded from https://github.com/tektonia/bluelab iot
where a working example can be uploaded to a compatible
ESP8266-E12 hardware, or adapted for another
microcontroller module with equivalent functionalities.

The BlueLab IoT functions available for the device are
shown in Figure 7.

Most of these functions have been used in the code shown
in Figure 3, namely: DataBaseConnection(), that creates

a new object, and it is only needed to be done once in the
program; login(), that establishes a connection with the

User data system. It has to be called every time a session id is
needed to access the IoT data database system; newFrame(),

creates a new frame header with an empty data content
header; addKeyValue(), adds key-value pairs to the data

content of a frame; sendFrame(), sends a frame with the

pre filled headers and content data header; getSeqNum(),

returns the highest sequence number stored in the database
for a specific station id.

Figure 7 – Functions available for the device

Of the functions listed in Figure 7 that have not been used
in the examples shown are: setDebug(), that fills a debug

header for all frames allowing a more verbose response from
the calls made to the BlueLab IoT data database system;
longLongToString(), which converts a long long data

type value to a String; and sendLastFrame(), that resends

the last frame with the most recent session id. This function
is called specifically when the sendFrame() call fails due to

an invalid or outdated session id. In that situation a new login
has to be issued and after its success the sendLastFrame()

function is called to send the outstanding frame.
Functions available for the API (application programming

interface) software module can be found in
https://github.com/tektonia/bluelab iot under the api folder.
These functions are shown in Figure 8. All functions have the
same $data parameter which corresponds to the contents of
the post call made through the https protocol to
https://bluelab.pt/iot/calliot.php; the only entry point interface
to access the BlueLab IoT data database. It is expected that
all the https calls have a valid e-mail and corresponding

session id before the functions of Figure 8 end up being
called.

These functions allow the creation, destruction of the
database, and the insertion and retrieval of data related to the
IoT database represented in Figure 2.

Functions to change or remove a station definition, or
delete data within a time range are available. Though, it is
not possible to change the data acquired by a device. If a
device changes place (latitude or longitude), then it is
preferable to create a new station with the new position and
an observation stating the changes and data is stored with the
new station id.

Figure 8 – Functions available for the API

A working API that uses the functions shown in Figure 8 is
presented in section V. Any user can build its own API by
calling the required functions as shown in several examples
on Figure 9, where javascript functions are called as they are
in the html files on the BlueLab site.

/**** https post function calls ****/

function getAllStationIds($data);

/* Information of a specific station_id */

function getStation($data)

function getAllStations($data);

/* All entries from requested station_id

and sequence number */

function getEntry($data)

/* All entries from requested station_id */

function getAllEntriesFromStation($data)

/* Entry with the lowest sequence number of

the requested station_id */

function getFirstEntry($data);

/* Highest sequence number entry of the

requested station_id */

function getSeqNumber($data);

/* Stores a single key-value pair and its

timestamp for the specified station_id and

sequence number */

function storeKeyValue($data)

/* Stores an array of key-value pairs with

the same timestamp for the specified

station_id and sequence number */

function storeArrayKeyValue($data)

/* Creates a new station with information

supplied by the user */

function createStation($data)

function createDataBaseIfNotExists($data)

function createDataBase($data);

function destroyDataBase($data);

/**** DataBaseConnection class ****/

DataBaseConnection(String l_host, String

l_url, String d_host, String d_url);

bool login(String mail, String pass);

String longLongToString(long long ll);

void newFrame(int stationId, int seq, long

long timeStamp);

void addKeyValue(String key, <Type> value);

void setDebug(bool deb);

String sendFrame();

String sendLastFrame();

int getSeqNum(int stationId);

V.Silva | i-ETC - IoT 2018, Vol. 4, n. 1 (2018) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

https://github.com/tektonia/bluelab_iot
https://github.com/tektonia/bluelab_iot
https://bluelab.pt/iot/calliot.php

Figure 9 – Javascript calls to the BlueLab IoT database functions

Examples in Figure 9 show the interaction with the
https calls and processing its result. Function SeqNum()

sends a request to the database and when it is processed, and
its result is received through the function
SeqNumReceived(data) defined as a callback function in

SeqNum(); where data is a structure with the result of the

call and data.seq_num holds the highest sequence number

in the entries that belong to the station_id parameter in

the getSeqNumber function call.

The main difference between newEntry() and multiEntry()
is that the first only sends a key-value pair and the second an
array of key-value pairs.

V. VALIDATION AND USE OF THE PROPOSED PLATFORM

At the BlueLab IoT site https://bluelab.pt choose the IoT
link on the IoT icon and a page will be displayed as shown in
Figure 10, where it is possible to make a new registration,
recover a forgotten one, or login in with the correct
credentials.

 a) b)

Figure 10 – BlueLab IoT a) entry page and links

The register process is to acquire a unique entry and
identity into the system, with the e-mail as the user and a
chosen password. If a new registration is not made, a
demonstration login can be used instead (user: a@a.a
password: a); the state of that login depends only on those
that use it so no relevant information may be present on its
associated database. Nevertheless some collected data is
available to be used on the working examples as those below.
After a successful login a page similar to that of Figure 11
shows up.

Figure 11 – Example showing the user environment and data to be

requested

There are some clickable buttons, shown in Figure 11, that
allow: to show all user stations (the environment), insert data
into any station (as a debugging procedure, simulating the
entry of device data, which is supposed to be added through
the physical device interaction), and show data (download it
as well) that can be visualized either as a scatter graph or on
a map if the data holds geospatial information.

The selected selection shown in Figure 11 is to get data
from 10/08/2018 20:00h till 11/08/2018 08:59h from stations
1,17,18, and 19 that hold the key “temp”. A dataset with 4
variables was received and shown as Figure 12.

function SeqNum(sid, statId){

 $.post(

 "https://bluelab.pt/iot/calliot.php",

{func: "getSeqNumber",

 email: $('#email').val(),

 sessionId: sid,

 station_id: statId

},

SeqNumReceived,

"json"

);

}

function SeqNumReceived(data){

 seqNum = parseInt(data.seq_num)+1;

}

function newEntry(sid,st_id,seq,tm,ky,vl){

 $.post(

 https://bluelab.pt/iot/calliot.php",

{ func: "storeKeyValue",

 sessionId: sid,

 email: $('#email').val(),

 station_id: st_id,

 seq_num: seq,

 t_stamp: tm,

 key: ky,

 value: vl

 },

newEntryCreated,

"json"

);

}

function multiEntry(sid,st,seq,t,mx,mn,ac){

 $.post(

 "https://bluelab.pt/iot/calliot.php",

{ func: "storeArrayKeyValue",

 sessionId: sid,

 email: $('#email').val(),

 station_id: st,

 seq_num: seq,

 t_stamp: t,

 dados: {

 tempMax: mx,

 tempMin: mn,

 tempAct: ac

 }

 },

multiEntryCreated,

"json"

);

}

V.Silva | i-ETC - IoT 2018, Vol. 4, n. 1 (2018) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

https://bluelab.pt/

Figure 12 – Temperature data in C from 4 different devices

The scatter graph of Figure 12 represents the temperature
that similar stations acquired during the selected period.
Stations 1,18 and 19 are similar as they were measuring room
temperature in different places of a house, while station 17
was positioned outside the house in a shade so that it would
not receive direct sunlight. Data in station 19 has a rhythmic
modulation which is correlated to a continuous charging of a
battery that is inside the physical device; the battery heats up
while it charges. This station can be seen on Figure 13 a).

Figure 13 – Two different stations a) Rechargeable battery, temperature,

humidity and pressure sensor and b) RTC, temperature, humidity, pressure

and air quality sensor.

Presented in Figure 13 are two different stations with the
same microcontroller; station number 1 is on image b), it is
continuously connected to a power source and has a real time
clock, temperature, pressure, humidity and air quality

sensors. It has been continuously sending data to the database
since 25.07.2018, every 90s interval.

To try with a real example, upload the code supplied in
https://github.com/tektonia/bluelab iot to an ESP8266-E12
module. The ssid and ssid_password for the wifi network
must be set (and also the user e-mail and password) before
compilation and uploading to the physical device; station.

VI.CONCLUSIONS

This system is easy to setup and made to work with the
code supplied through the links available on previous
sections. The current database [3] can hold up to 4 Tera byte
of data. If this is an issue, data can be withdrawn from this
database and stored somewhere else, eventually not storing
the raw data but statistical outputs. A developer user of the
BlueLab IoT can build its own API with the functions
provided above, and install any quantity of different stations
(maximum set as 25).

Using a mobile station with geolocation for example a
smartphone, which stores the path to BlueLab Iot, and
another station, carried along with the smartphone, that sends
temperature values, allows the temperature to be geo-
synchronized.

Future developments like a sophisticated representation for
the visualization of the data, including statistic information
will be available in the BlueLab Iot site; one of the basic
requirements of the IoT elements [9].

REFERENCES

[1] T. Kramp, R. van Kranenburg, and S. Lange,
“Introduction to the internet of things,” in Enabling
Things to Talk: Designing IoT Solutions with the IoT
Architectural Reference Model, 2013.

[2] M. Bauer et al., “IoT reference architecture,” in
Enabling Things to Talk: Designing IoT Solutions
with the IoT Architectural Reference Model, 2013.

[3] PostgreSQL, “PostgreSQL: The world’s most
advanced open source database,”
http://www.postgresql.org/, 2014. .

[4] Espressif, “ESP8266EX Overview | Espressif
Systems,” Esp8266, 2017. .

[5] Bosch Sensortec, “BME280 - Combined humidity,
pressure and temperature sensor,” Datasheet. 2015.

[6] K. Vandana, C. Baweja, Simmarpreet, and S.
Chopra, “Influence of Temperature and Humidity on
the Output Resistance Ratio of the MQ-135 Sensor,”
Int. J. Adv. Res. Comput. Sci. Softw. Eng., 2016.

[7] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H.
Ning, “A Survey on Gas Sensing Technology,”
Sensors, 2012.

[8] Arduino, “Software Arduino (IDE),” Arduino, 2017.
[Online]. Available:
https://www.arduino.cc/en/Guide/Environment.

[9] A. Knud and L. Lueth, “IoT basics : Getting started
with the Internet of Things,” IoT Anal., 2015.

https://github.com/tektonia/bluelab_iot

