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Abstract—The ability to automatically detect and classify
complex and dynamic urban sounds is an important tool for
urban planning such as building efficient noise monitoring, traffic
management, surveillance, and urban soundscape mapping. To
monitor and ultimately understand a city’s sonic environments
requires long term measurements and analysis of data collected
around the city. In this context, we present a proof of concept
for a smart, low-cost, acoustic sensor to be deployed in urban
environments. We conducted several preliminary experiments on
the two major functioning parts of our system: sound event
localization and classification. So far, we are able to detect the
direction of arrival of two simultaneous sound sources, and
classify audio clips into several predefined classes of urban
sounds, but other blocks need to be implemented in order to
have a fully functioning smart audio sensor. In this paper, we
describe in detail the device’s design in terms of its processing
blocks, the experiments we performed and their key results, as
well as directions of future work.

Keywords: Urban sound classification, Direction of Ar-
rival, multichannel microphones, machine learning, signal
processing.

I. INTRODUCTION

A. Sound in Smart Cities

A Smart City relies information and communication tech-
nologies, machine learning, and the Internet of Things (IoT)
to optimize city functions and operational efficiency, drive
economic growth and sustainability, and share information and
foster public engagement. Today, 54% of the world population
lives in cities, and by 2050, according to the United Nations,
it is estimated that this number will reach 68%, with cities
in China, Southeast Asia, and Latin America growing the
fastest. In the light of these new challenges brought by
demographics and worldwide environmental and economic
changes, Smart Cities have spiked the interest of policy
makers, governments, city planners, researchers and common
citizens in general. Smart City technologies is a valuable tool
to reduce costs and resource consumption while enhancing
efficiency, participation and overall quality of living. Smart
Cities rely on wireless sensor networks [1], [2] to gather
information and build a live picture of city operations, urban
infrastructures, services, and governance. A city is a complex
and dynamic entity full of movement, interactions and flows,
and it is undeniably linked to the physical phenomenon of
sound. For Smart Cities technologies, sound is a rich and

always present source of information, with the potential to
drive many applications such as audio surveillance [3], [4],
traffic management [5], soundscape mapping [6], [7], and
noise monitoring [8], [9], [10]. Noise pollution is a serious
public health risk linked to distress and other disorders [11]
and therefore a great reason of concern for city and health
authorities, as demonstrated by the Environmental Noise Di-
rective 2002/49/EC published by the European Commission.
However, systematically monitoring city noise has been a
difficult task due to the lack of manpower and resources.
Typically, enforcement of city laws regarding noise relies on
inspectors dispatched to the location of the complaints and the
process can be slow and frustrating. Furthermore, and until
recently, commercial acoustic devices designed to reliably
monitor noise levels were proprietary and expensive, hence
not configurable or re-programmable and not easily deployable
due to security concerns. The advent of low-cost, versatile
computing platforms such as Arduino [12], BeagleBone [13],
or Raspberry Pi [14] along with the new emerging reality of
IoT which seamlessly connects these devices to the cloud has
opened the possibility to uninterruptedly acquire city sounds
and process them in real time. Furthermore, these devices
also have sufficient computing power to run complex signal
processing and machine learning algorithms, making them
“intelligent sensors” capable of recognizing/classifying sonic
events and characterizing their sonic surroundings. Note that
the process of continuously acquiring and processing sound is
a demanding task due to the enormous amount of information
it generates, making it difficult to deal with the raw data due
to space, memory, and other limitations. This technology has
open new ways to record and process city sounds because of
three main reasons. First, device processing capabilities can
greatly reduce the amount of information stored/transmitted.
Sound detections techniques based on signal power or other
features can be used to select only the relevant parts of
the audio stream, and time-frequency representations of the
audio can further decrease the amount of information needed.
Second, the low-cost makes the devices scalable in a sense that
they can be easily deployed in great numbers thus providing
a precise and thorough sonic picture of the city. Third, the
IoT reality allows an ubiquitous connection to the Internet
making it possible to centrally archive, manage, and monitor
the transmitted data from the network of sensors. Academic
research groups and consortia have already put forward some
initiatives to characterize city sounds via a network of low-cost
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sensors [9], [10], [15].

B. System’s Overview

In this work, we introduce a proof of concept for one of
such devices: an intelligent, low-cost, urban acoustic sensor
for continuous sound acquisition and processing. The sensor
is composed of an array of microphones, equipped with
signal conditioning and analog to digital converters, and a
Raspberry Pi computer which enables the system to run feature
extraction, digital signal processing, and machine learning
algorithms on the acquired audio signals. Furthermore, this
type of devices are cheap and can easily be connected to
the cloud, which is an important issue when building a large
network of these sensors, following the concept of IoT for
Smart Cities. The main contributions presented in this paper
are:

• The use of a 3-dimensional sound capturing system, the
Mictetrapus. The system is based on a specific config-
uration of an array of microphones placed in particular
geometries which allow for the location and separation of
multiple sound sources. In realistic situations, different
sound events can coincide in time, and this can hinder
performances of classifier and recognition systems. Being
able to determine and separate simultaneous sources is an
important step to build effective urban audio monitoring
devices, since it allows to process the audio from the
various microphones, and input to the classifiers single-
event audio segments. Furthermore, knowing the location
of the sonic events can be an important contribution to
video surveillance systems, for instance, by selecting the
optimal viewpoint of a 360o camera.

• The use of a Raspberry Pi computing platform allows
running signal processing and machine learning algo-
rithms, and the low-cost of the core components provides
a versatile and scalable audio sensing system to be
deployed in Smart Cities.

• A framework for classifying and automatically tagging
complex urban sounds. This is an important aspect of
many emerging applications such as noise monitoring,
soundscape mapping, and traffic management, and a
valuable source of information for city planners.

The remainder of this paper is organized as follows: in
Section II we present the proposed framework in terms of
hardware setup and in terms of signal processing and ma-
chine learning capabilities needed for urban acoustic moni-
toring tasks, with particular emphasis on sound event detec-
tion/localization and sound event classification, which are two
core functions of the system. In Section III, we demonstrate
the effectiveness of the proposed system through a series of
tests on realistic urban sounds; the techniques used for sound
localization are tested with real-world recordings, while the
performance of the classification methods used are extensively
tested on the UrbanSound8k dataset [16] in multi-class and
multi-label classification scenarios. A discussion on future
work and systems improvements is presented in Section V,
along with possible ways to enhance urban living by using ur-

ban sound processing and classification techniques. Section IV
concludes this work.

II. PROPOSED FRAMEWORK

We present a proof of concept for a low-cost, intelligent
sensor for automatic urban sound classification and tagging.
The design took in consideration the final intent to operate
in a IoT, Smart City scenario where several of these devices
could be deployed around a city to collect urban acoustic in-
formation. The systems hardware components consist solely of
the Mictetrapus multichannel sound capturing device and the
Raspberry Pi Model B 1GB computing platform responsible
for processing the audio information. This is accomplished
by four main functioning blocks of the processing part of the
system (see Figure 1):

• Event detection and segmentation. This block detects in
the audio streaming the beginning and end of each sound
event. Only these audio segments will be analyzed in
subsequent blocks;

• Direction of arrival (DOA) estimation. DOA estimation is
a well studied subject with a significant development of
new algorithms in the past three decades [17]. This block
is responsible for detecting, in a 3-dimensional space, the
direction of the sound sources.

• Source separation. This part separates the sound sources
based on the captured audio signals. When multiple sound
sources occur simultaneously, each microphone captures
a different mixture of the sources. Based on independent
component analysis (ICA) [18], the clean sources can be
recovered from the audio mixtures. The sources are then
processed by the classification block.

• Classification. This block uses supervised classification
algorithms to process and convert the acoustic signal into
a symbolic description of sound events.

This work describes the progress made so far, with special
emphasis in the DOA and classification blocks of the system.

A. Event Detection and Segmentation

Audio segmentation refers to the class of theories and algo-
rithms designed to automatically reveal semantically mean-
ingful temporal segments in an audio signal, also referred
to as auditory scenes [19]. These scenes can be seen as
equivalents of paragraphs in text, and can serve as input
into audio categorization processes, either supervised (audio
classification) or unsupervised (audio clustering). As a first
approach, the acoustic events are detected by defining a set of
thresholds based on energy. Therefore, an event is set if the
sound levels overcome a predefined value for more than some
predefined time duration and the event ends if the sound levels
drop below the threshold. This simple method has proven
effective enough in some experiments we have conducted, but
is too rudimentary for the diversity of sonic environments and
noise levels found in a city. Further tests have to be carried
out to make the detection and segmentation block more robust
and versatile.
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Figure 1. General block diagram of the proposed system of monitoring sound events in an urban environment.

B. Direction of Arrival Estimation

Direction of arrival (DOA) estimation is the task of identi-
fying the relative position of the sound sources with respect to
the microphone. DOA estimation is a fundamental operation
in microphone array processing and forms an integral part of
speech enhancement [20], distant automatic speech recogni-
tion [21], spatial audio coding [22], and sound source sepa-
ration [23]. Popular approaches to DOA estimation are based
on time-delay-of-arrival (TDOA) [24], the steered-response-
power (SRP) [6], or on subspace methods such as multiple
signal classification (MUSIC) [25] and the estimation of signal
parameters via rotational invariance technique (ESPRIT) [26].
The aforementioned methods differ from each other in terms
of algorithmic complexity, and their suitability to various
arrays and sound scenarios. MUSIC specifically is very generic
with regards to array geometry, directional properties and can
handle multiple simultaneously active narrow band sources.
On the other hand, MUSIC and subspace methods in general,
require a good estimate of the number of active sources,
which are often unavailable or difficult to obtain. Furthermore,
MUSIC is computationally intensive and can suffer at low
signal to noise ratio (SNR) and in reverberant scenarios [27].

ICA based methods have been proposed to identify the delay
between microphones corresponding to a source direction.
Another popular algorithm is Steered Response Power with
Phase transform (SRP-PHAT) [27], which is the generalization
of Generalized Cross Correlation with Phase transform (GCC-
PHAT) for more than two microphones. GCC-PHAT allows for
a direct computation of the DOA using the time delay belong-
ing to the maximum of the cross correlation function of the
signals. SRP-PHAT evaluates the cross correlation functions of
all pairs of microphones for each candidate direction, adds up
the GCC-PHAT scores and finally performs a maximum search

to obtain an estimate of the DOA. Another group of algorithms
devises a distance measure between an observation and all
possible candidate directions. It is employed a cosine distance
between the observed phase and the candidate models, i.e., the
expected observations in an anechoic sound field originating
from a given direction.

For the purpose of determining the DOA of a sound in
a scenario of multiple simultaneous sound sources, several
approaches were considered balancing accuracy and compu-
tational load, keeping in mind the utilization of IoT devices.
Among of the most common methods of tracking of sounds,
we considered in this paper, the approaches of GCC-PHAT and
the ICA technique. Although GCC-PHAT algorithm presents
good results when used to estimate the direction of arrival
based on that delay, it is not useful when used in an en-
vironment with multiple source signals. For this reason, the
ICA method was considered, as it allows for the separation
of multiple statistically independent signals, as long as the
number of sources is not superior to the number of sensors.

Despite this limitation, the GCC-PHAT method, allows for
a much faster estimation of the direction of arrival, given its
lower complexity when compared to ICA. As such it would
still be a viable option when considering only one sound
source. Figure 2 shows the topology of microphone array
setup, the Mictetrapus, designed and built in collaboration
with FI-Sonic company. This device consists of four articu-
lated arms, ending on omni-directional microphone capsules.
Therefore, it has the ability of changing the distances and
topology of the array easily. Although the distance between
microphones can be arbitrary selected, for the purposes of this
study, the distance of 2.5 cm and 5 cm were used. In the setup
depicted in Figure 2, the microphones are 5 cm apart; tests
with 2.5 cm distances are reported in Section III-A.
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a) b)
Figure 2. Mictetrapus: microphone array developed using a triangular
topology. Mics 1, 2 and 3 are in horizontal plane, along a circumference,
with an angle of 120 degrees between them, and mic4 is on the vertical of
mic1. a) photo of the apparatus developed and b) top and lateral views of the
microphone array.

Figure 3 depicts the procedures used to estimate the direc-
tion of arrival of an acoustic event and source separation.

Figure 3. Simplified flowchart for the DOA estimation and source separation
procedures.

Considering an acoustic urban environment, the four signals
acquired by the Mictetrapus form a mixture of the different
sources. Each of these signals will have delays for each source,
corresponding to the microphones spacial position. Therefore,
the signals are later separated by the ICA procedure. A con-
version to frequency domain is applied before ICA, because of
limitations of the ICA [28] technique when dealing with non-
linear or non-instantaneous mixtures, as is the case, given the

signals show delays in time domain. Since the convolution
operation in the time domain turns into a multiplication in
frequency domain, the signals are viewed as instantaneous
mixtures.

To perform this transition into the frequency domain, the
Short-Time Fourier Transform (STFT) is used on each mix-
ture, resulting a matrix of frequencies indexes, bins, for
different time frames. In other words, the spectrogram of
the mixture is obtained, which represents the variation of
each frequency index across a given time frame. This results,
however, in mixtures which are composed of complex values,
meaning that the ICA procedure, for our purpose, should be
able to deal with these type of values. For this reason, the
toolbox RobustICA [29] is considered in this work.

In fact, ICA is essentially a statistical technique often used
for the separation of any signal that composes a given mixture
that is often incomprehensible, with the purpose of obtaining a
clean signal without the interference of the remaining signals
present in the mixture. This is a Blind Source Separation
problem, BSS. ICA method can make that separation as long
as certain conditions are met [28], by computing a separation
matrix that allows the retrieval of each individual source.
Also, these separation matrices allow the current method can
extract the direction of arrival of the source for each pair of
microphones.

Therefore, after applying the STFT, the four mixtures are
analyzed by ICA, one frequency at a time, and for each
frequency index, a separation matrix is computed via ICA.
The idea is that each separation matrix has information on
the direction of arrival of the signal, so by partially isolating
a signal through the use of frequency indexes and computing
their corresponding matrix, it is possible to obtain the direction
of arrival for each individual signal.

The direction of sound source is estimated according to [30],
where the angle of arrival, θp, for each pair of microphones
is obtained:

θp = cos−1
(

6 (Hqp/Hq′p)

2πfc−1(dq − dq′)

)
(1)

where 6 is the angle operator, f and c are the frequency
and the speed of sound, respectively. This angle is calculated
based on the distance dq − dq′ between microphones q and
q′, and the frequency responses, Hqp and Hq′p, of the mixing
system, H(f), obtained via ICA.

This approach has, however, its limitations, namely the
ambiguities of scaling and permutation of ICA which affect
the accuracy of the reconstructed signals. Another limitation
is the poor results observed when trying to reconstruct the
sources after going through all these steps, where it was not
possible to determine which of the sources correspond in each
of the obtained directions.

After obtaining the estimated angles for each pair of micro-
phones, it is necessary to calculate the final angle considering
the given referential of the microphone array for the considered
topology. Therefore, it is necessary to determine whether the
angles obtained from Equation 1, are facing ’forward’ (0 to
180 degrees) or ’backward’ (180 to 360 degrees), since the
signal from a source originated from a k degree angle is
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virtually the same as a signal originated from a (360-k) degree
angle. This means that from Equation 1 the estimated angle
will always be between 0 and 180 degrees.

To overcome this redundancy, the setup of the microphone
array is used in a process of elimination to find out which of
the angles are facing ’forward’ and which are actually facing
’backwards’ and need to be corrected with that information.

C. Source Separation

In the present study, sound (event) source separation refers
to the task of estimating the signals produced by individual
sound sources from a mixture of these signals. In our setup,
the microphone array captures different delayed mixtures when
there are co-occurring sound events. Our goal is to extract the
clean source signals based solely on the captured mixtures.
This is a hard problem, since by nature, the mixing is a con-
volutive process and the captured signals are linearly filtered
versions of the sources. The task is to determine the inverse
filters: this is a blind source separation (BSS) problem that can
be solved via independent component analysis methods [31].
One of the approaches to BSS is to transform the signals to the
frequency domain. Due to the properties of the Fourier trans-
form, convolutive mixtures in the time domain can be obtained
by multplying the signals spectra, which makes the BSS easier
since now we deal wiht multiplicative instantaneous mixtures.
However, the permutation ambiguity of ICA solutions becomes
a problem. There are methods that deal with this permutation
problem [30]. Another way to tackle the BSS problem is to
directly estimate the de-mixing filters in the time domain [32].

D. Classification

The task of automatically classifying dynamic, complex
urban sounds is an important aspect of many emerging appli-
cations in the context of IoT and Smart Cities, such as noise
monitoring, surveillance, and soundscape characterization, and
therefore has recently gained a lot of attention from the
academic community [10], [33], [34], [35], [36]. In order
to classify sound events, it is necessary to extract from the
audio signal a set of representative acoustic features. These
features are generally derived from audio signal processing
techniques inspired from the research fields of automatic
speech recognition and music information retrieval [37], [38].
Time-frequency features are obtained by dividing the time sig-
nal into overlapping, short-length segments, in which spectral
descriptors are calculated, like the all-purpose Mel-frequency
cepstral coefficients (MFCCs) [37]. In this work, the signal
was divided into 43 milliseconds segments (2048 samples
at a sampling frequency Fs = 48kHz), with 50% overlap,
and we used 50 Mel bands to extract 20 MFCCs, plus the
spectral roll-off, spectral centroid and the zero crossing rate,
features also commonly used in content-based music informa-
tion applications [39]. This process converts the audio signal
into a sequence of 23-dimensional vectors. Standard machine
learning classification algorithms only deal with vectors not
vector sequences, and therefore the feature sequence has to be
converted into a single vector. Our approach was to summarize
the sequence of features using the median and the standard

deviation. The median was used instead of the mean since
this statistic is more robust to outliers. This way each audio
excerpt is represented by a 46-dimensional vector. The feature
vectors were pre-processed via principal component analysis,
PCA, followed by variance normalization (whitening) [40]. In
the context of urban sounds, the tests we conducted with nor-
malized features showed better results versus non-normalized
ones, which was also corroborated by other researchers [36],
[41]. For classification we used a standard k-nearest neigh-
bors (k-NN) algorithm [40], and a support vector machines
(SVM) [42]. The k-NN was used in order to ascertain a
baseline performance on urban sound event classification. The
k-NN is an instance-based learning, where class membership
is assigned based on a majority vote of its neighbors, and
is possibly one of the simplest classification methods, and
therefore it is well suited for a baseline system. The SVM
were chosen for their performance and the generalization capa-
bilities, particularly in high-dimensional spaces. Furthermore,
SVM are binary classifiers and ideal for automatic tagging of
sound events, which can be considered a binary classification
problem (see Section III-B). A representation of the whole
process leading to the classification of a sound excerpt is
shown in Figure 4. The implementation was done in the Python
programing language, using librosa package [43] for audio
feature extraction, and scikit-learn package [44] for data pre-
processing and classification.

III. EXPERIMENTAL RESULTS

A. DOA Estimation

The source of sound material used in this study was the
UrbanSound8K dataset1[16]. For the estimation of DOA, tests
were performed in anechoic chamber facility as a compromise
between ideal conditions and outdoors scenario in absence of
any obstacles of significant dimensions capable to produce
sound reflections and diffraction. Therefore, results are not
affected by issues like the reverberation of the room, when
using the proposed setup of the array of microphones for the
tracking of the direction of arrival of the different sounds in a
three-dimensional space. Moreover, the effects of diffraction
of sound waves on the surface of the capturing sound device,
the Mictetrapus, are therefore considered. Figure 5 shows the
setup installed in the anechoic chamber for the experiments.

The results are obtained when testing the complete system
with two sources separated by 45 degrees on the horizontal
plane, for different types of signals. Source 1 can be lifted to
modify the elevation angle.

Tests used a sampling frequency Fs = 48000 Hz, and a
NFFT (number of points used for calculating the Fast Fourier
Transform - FFT) of 2048. Tests were made for distance
between microphones of 5 cm and 2.5 cm. The audio material
used in the tests consists of a number of different type of
daily sounds encountered in urban environment to simulate
the city life, such as, Firetruck sirens, Ambulance sirens,
General sirens and horns, Gunfire, Airplane, Dog barking,
Truck engine, Music, Explosion, Shot bursts, Traffic, etc.

1publicly available at:
https://urbansounddataset.weebly.com/urbansound8k.html
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Figure 4. Block diagram for the sound event classification process.

Figure 5. Photograph of the experimental setup in the anechoic chamber
facility and configuration of Mictetrapus device with the locations of two
sound sources (source 1 and 2) used in the experiments. Also, it is shown the
ambiguity caused by this geometry of microphone array, ’mirror effect’, when
sound waves come from different locations (yellow and green directions).

The graphics shown in Figure 7 represent the results ob-
tained when testing the system for different angles and using
two different sources in every test, to confirm its performance
when faced with diverse types of signals. Each point in
the x-axis of Figure 7 represents a different combination
of simultaneous signals that were used in the test. These
combinations are as follows in Table I.

Considering the computation time of the direction esti-
mation for non-simultaneous sound sources, the GCC-PHAT
achieved 0.08 seconds against 2.2 seconds using ICA. There-

Figure 6. Angle estimation for one pair of microphones for each frequency
index. The upper bound frequency is 3.5 kHz to avoid spatial alising.

Table I
COMBINATION OF SOUND TYPES USED IN THE TESTS.

fore, for scenarios of sound tracking of just one source GCC-
PHAT should be used, leaving more computational resources
of CPU for other tasks.

In practice, this sample rate is often too low to achieve
a good angle resolution. Thus, interpolation approaches are
required to obtain more precise angle estimates. In fact, a
maximum delay of 3 and 7 samples is expected for a distance
between capsules of 2.5 and 5 cm, respectively, which is
usually very low. In this work, the re-sampling technique was
used with a ratio of 4, which is a reasonable balance between
angle resolution improvement and load computation.

Figure 6 represents the DOA estimation for each frequency
of two sources using Equation 1, for the microphone pair
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composed by mic1 and mic3. In this example, for source 2,
where the green arrow corresponds to 45 degrees (obtained),
from the pair mic3 and mic1 (referential in red color), the
yellow arrow (expected) is calculated as (360 - 45) = 315.
Moreover, after adjusting the red referential of the microphone
pair, to the blue referential of the microphone array setup in
Figure 2, the final angle will be (315-180) = 135.

The final angle is calculated based on all the DOA angles
previously obtained for a given source, using trigonometry
relations and triangulation methods.

As shown in Figure 6, the angle of one source (blue)
sometimes overlaps with the angle of the other source (green),
which is a consequence of ICA permutation ambiguity. An-
other key factor, is that despite the second source being at
135 degrees, the result points to 45 degrees. This is because,
as previously stated, the angles returned by Equation 1 only
vary between 0 and 180 degrees, and that when the angle is
above 180, there is a ’mirror effect’ as shown in Figure 5
(green arrow):

In Figure 7.b), elevation angles are introduced in one of
the sources, to test the use of the 4th microphone which will
return the angle for each source, from a vertical point-of-view,
thus turning a direction in a two-dimensional space, into an
estimation in a three-dimensional space.

From the results obtained in Figure 7, it is possible to
conclude that the distance between microphones affects the
outcome of the system, and causes a greater margin of error
for shorter distances. This stems from the fact that this distance
will influence the resolution of the final angle, that is correlated
with the maximum possible number of samples between each
microphone and the speed of propagation of the signal (speed
of sound), meaning that the resolution becomes smaller for
shorter distances. However, the increase of the distance of the
microphones results in a reduction of the effective bandwidth
of the audio contents due to the effect of spacial aliasing.

Additionally, it can be concluded that the worst results were
observed when using two sources with very similar spectra
(refer to Table I combinations: 3 and 4) and for sources that
show very impulsive profiles such as, the barking of a dog or
several periodic bursts of shots (refer to Table I combination
7), since these types of signals tend to have several pauses
between bursts.

The system was also tested using real sound signals with
simulated delays based on the location of a virtual source.
These tests, consisting of changing synthetically the time delay
from each virtual source to the microphone array, are very
close to the results in which a real recording was used, thus,
are not shown in the paper.

B. Classification

We tested the effectiveness of the classification system on
the UrbanSound8K dataset through several systematic tests.
The dataset is designed for a multi-class problem, where each
example belongs to one of ten predefined, mutually exclusive
classes. A brief description of the dataset is given in the next
paragraph and the results obtained with multi-class problem
afterwards. Urban sounds are dynamic, chaotic and can be

a)

b)

Figure 7. Estimated directions of sound sources for a combination of
two simultaneous acoustic signals. The blue lines correspond to the true
directions of the two sources (in degrees), and the circle and triangular markers
correspond to the estimates obtained with 5 cm and 2.5 cm distances between
microphones, respectively. a) Azimuth angle obtained using three microphones
for two simultaneous occurring sources at different positions. b) Azimuth
and elevation angles obtained using four microphones for two simultaneous
occurring sources at different positions.

composed of several co-occurring events, and the multi-class
scenario is a bit too restrictive for our goals. Ideally we would
like our system to be able to classify simultaneously occurring
audio events. Hence a more realistic setting is the multi-label
setting where sound clips can be assigned multiple labels, or
tags. This problem is known as auto-tagging which refers to
the task of assigning each audio excerpt a set of high level
concepts (the tags). This problem is usually divided into sets
of binary classification problems, one for each tag. In the
experiments we conducted, the tags were the class labels and
we present the results at the end of this section.

1) Data and Testing Methodologies: In recent years, several
new datasets for environmental sound classification tasks have
been released (e.g. [16], [45], [46]). In order to evaluate
the proposed approach, we chose the UrbanSound8K dataset
which includes ten classes of urban sounds with 8732 real-
world sound clips. A brief taxonomy of the classes, along
with the number of audio segments per class is shown in
Figure 8. The clips span ten environmental sound classes:
air conditioner, car horn, children playing, dog bark, drilling,
engine idling, gun shot, jackhammer, siren, and street music.
The reason for choosing this dataset is because it encompasses
urban noises and emergency sounds which are highly related to
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city life and thus suitable for testing urban sound classification
algorithms, and also because we can compare our results
with previously published approaches evaluated on the same
dataset [36], [47], [48]. We used a ten-fold cross-validation
in all our test with the folds provided by the UrbanSound8K
dataset. All the performance values are obtained by averaging
the results on the test folds.

Figure 8. UrbanSound8K dataset - number of samples per class.

2) Multi-Class Classification: The confusion matrices per-
taining to the classification results of k-NN and SVM are
shown in Figures 9 and 10. These results were obtained
after the parameters of the classifiers were adjusted to yield
the best performances. We tested the k-NN with a different
number of neighbors and chose k=9 empirically. The overall
accuracy for this classifier was 54%. For the SVM, we tested
several kernels and opted for a radial basis function one, and
through experimentation we also calibrated the regularization
parameter. The overall accuracy for this classifier was 65%.
Analyzing the figures, we can see that there is some confusion
between classes with mechanical, repetitive sounds, namely air
conditioner, drilling, engine idling and the jackhammer. There
is also some error between children playing and street music,
since they also have similar acoustic patterns. The dataset
also provides a salience level for the audio clips indicating
whether the event was perceived to be in the foreground or
the background of the recording. Foreground sounds are salient
and normally undistorted by other sounds, while background
sounds are often mixed with environmental or other types of
noise. For the SVM model, the classification was done for the
whole dataset and also for foreground and background sounds
separately. The accuracies per class are shown in Figure 11.

The performances of our model are still below some of the
results found in the literature. In [36], an mixture of expert
models combined with local and global features achieves an
accuracy of 77%, while [47] and [48] use deep convolutional
neural networks (CNN) and obtain an accuracy of 73% and
79% respectively. Our sub-optimal performances are mainly
due to two factors. The first has to do with the features
used in our models. The descriptors are based on short-time
spectral characteristics of the acoustic signals and do not
take in account medium or long term temporal relationships
that differentiate urban sounds. This is due to the pooling
process that converts the feature sequence into a single vector,
discarding temporal dependencies. This process is commonly
known as the bag of frames approach, and methods that use
this formulation have limited capabilities [49]. The second

reason has to due with the type of classification models used.
As the referenced works show, better performances can be
obtained with CNN. Furthermore, single multi-class models
may not be the best strategy to tackle the task of urban
sound classification. Specific urban sounds can be grouped
in broad categories such as mechanical or motorized sounds,
pitch sounds such as sirens or car horns, impulsive sounds such
as bursts and shots, nature sounds, human sounds, and many
others. These categories all have distinctive acoustic signatures
and therefore it may be beneficial to train models separately
for each type of broad category rather than building a model
for all sound classes.

Figure 9. UrbanSound8k - Confusion Matrices for the k-NN classifier (values
in percentages). k-NN overall accuracy: 54%.

3) Multi-Label Classification: In this section, we present
the results for the multi-label classification. For this task, ten
SVM binary classifiers were trained, one for each class, using
as the positive examples the class members, and as negative
examples the sound clips of all other classes. Compared to the
previous experiments, this is a more realistic scenario since
a single sound clip can be annotated with multiple classes,
a situation which is applicable to several audio excerpts
present in the UrbanSound8K dataset. Note that in this binary
classification problem we are dealing with highly imbalanced
sets, and therefore, the accuracy is a misleading metric since
assigning a negative label to all test examples results in
accuracies around 90%. More reliable performance measures
are obtained by analyzing receiver operating characteristics
(ROC) curves [50]. ROC curves are two-dimensional graphs
that depict the trade-offs between benefits (true positives) and
costs (false positives). The results for our models are shown in
Figure 12. SVMs, like many other classification models, can
output a score reflecting the degree of certainty in the decision
along with the predicted class. Using different threshold with
the classification scores can produce more “conservative”
classifiers that make positive classifications only with strong
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Figure 10. UrbanSound8k - Confusion Matrices for the SVM classifier (values
in percentages). SVM overall accuracy: 65%.

Figure 11. UrbanSound8k - Class accuracies for the SVM classifier. FG -
class accuracies on foreground sounds. BG - class accuracies on background
sounds.

evidence or more “liberal” ones making positive classifications
with weak evidence. The threshold can be adjusted to reach the
optimal operational point, which is located on the top left-hand
corner of the ROC curve (coordinate (0,1)). The information
in the ROC curve can be summarized by calculating the area
under the ROC curve (AUC) [50], and the results for our
models are shown in Figure 13. Analyzing the results, siren
sounds are the ones with better predictions but other classes
like dog bark and gun shots also show good results. On the
other hand, classes like children playing, street music or engine
idling, have worse performances.

IV. CONCLUSIONS

This paper focuses on urban sound content retrieval and
sound event location which is regarded as an essential building
block of smart cities. The proposed system assesses the sound
field and extracts the relevant information about the sound
events occurring in the city such as excessive sound levels,
type of sound sources and location of the sound events. In fact,
the urban sound content retrieval and sound event location is
regarded as an essential building block of Smart Cities, or the
new term, Happy Cities, in the sense to provide comfort and
security to the citizens. Therefore, a proof of concept of a

Figure 12. UrbanSound8k - ROC curves for the binary classifiers.

Figure 13. UrbanSound8k - Area under the ROC curve for the binary
classifiers.

low-cost, intelligent sound station for automatic urban sound
classification and tagging and event location was studied and
developed. The design took in consideration the final intent
to operate in a IoT concept, where several of these devices
could be deployed around a city to collect urban acoustic
information.

The multi-label classification was developed to able to
handle more than one sound event simultaneously, which is
a more realistic scenario in conformity urban environments.

The results obtained for the accuracy for the identification of
sound types, considering all elements of the database (both),
is relatively low, 65%. However, if we consider a situation
where we guarantee better segmentation and separation of
sound events and a better SNR(foreground), the results reach
73%. In a real-time operating situation and using the event
localization and source separation module, the classification
results should improve since we are dealing with separated
sources instead of a mixture of sounds.

The method used to the event location (DOA) achieved
good results in estimating the direction of arrival up to two
simultaneous sound sources, with an error of less than 3
degrees, for anechoic environment conditions.

Although these results are promising, much remains to be
done and improved.

V. FUTURE WORK

So far we have implemented the detection, direction of ar-
rival, and classification blocks of the system. The detection and
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segmentation need to be improved and the separation block of
the system is still in a preliminary phase of development and
further tests need to be done to determine the method that
better suits our purposes.

There are also other considerations that must be addressed
in order to have a fully functioning smart audio sensor.
The first has to do with the processing capabilities of the
computing platform. We need to guarantee that algorithms
can operate in real time without consuming the computing
resources of the system. We undertook some tests that show
that the classification and tagging algorithms run in real-
time on the Raspberry Pi. The process included the whole
classification chain beginning with the raw audio, extracting
features, representing the audio segment with a feature vector,
and finally predicting the tag or class label.

In fact, after the execution of the classification routine, the
Raspberry Pi took less than 7 secs to perform the classification
against 2 secs when running on an Intel (R) Core (TM) i7-
4710HQ CPU, for the k-NN and SVM classifiers. Therefore,
improvements in algorithms need to be done.

We still have to test other parts of the system such as the
DOA estimation and the source separation blocks, and it is
foreseeable that we will need to make some concessions in
terms of the complexity of the methods we choose.

Another aspect we need to address is how to manage and
transmit the information produced by the sensor when it is
continuously capturing audio. We have to determine how much
data the system is capable of transmitting to a centralized
computer, and still be able to fulfill its other processing
requirements. Finally, we need to tackle practical issues such
as devices housing, long-term exterior exposure, and power
requirements.
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