Optimal Control of a Multi-field Irrigation Problem: validation of a numerical solution by the optimality conditions
Abstract
Keywords
Full Text:
PDFReferences
Surface Irrigation Optimization Models. Journal of Irrigation and
Drainage Engineering, 112(1), 1061.
P. Bettiol and H. Frankowska. Normality of the maximum principle
for nonconvex constrained bolza problems. Journal of Differential
Equations, 243:256–269, 2007.
A. Cernea and H. Frankowska. A connection between the maximum
principle and dynamic programming for constrained control problems.
SIAM Journal of Control and Optimization, 44:673–703, 2005.
D. J. Bernardo, N. K. Whittlesey, K. E. Saxton, and D. L. Bassett.
Irrigation Optimization Under Limited Water Supply. Transactions of
the ASAE, 31(3):0712–0719, 1988.
HE Fawal, D Georges, and G Bornard. Optimal control of complex
irrigation systems via decomposition-coordination and the use of augmented
lagrangian. In Systems, Man, and Cybernetics, 1998. 1998 IEEE
International Conference on, volume 4, pages 3874–3879. IEEE, 1998.
M. M. A. Ferreira and R. B. Vinter. When is the maximum principle
for state constrained problems nondegenerate? Journal of Mathematical
Analysis and Applications, 187(2):438–467, 1994.
F. A. C. C. Fontes and S. O. Lopes. Normal forms of necessary
conditions for dynamic optimization problems with pathwise inequality
constraints. Journal of Mathematical Analysis and Applications, 399:27–
, 2013.
Fernando A.C.C. Fontes and Helene Frankowska. Normality and nondegeneracy
for optimal control problems with state constraints. Journal
of Optimization Theory and Application, 2015.
Karen Frenken and Virginie Gillete. Irrigation water requirement and
water withdrawal by country. FAO AQUASTAT, 2012.
IPMA. https://www.ipma.pt/pt/. Accessed: 2017-01-20.
S.O. Lopes, F. A.C.C. Fontes, Rui M.S. Pereira, MdR de Pinho,
and C. Ribeiro. Optimal control for an irrigation planning problem:
Characterization of solution and validation of the numerical results.
Lecture Notes in Electrical Engineering, 321:157–167, 2015.
S.O. Lopes and F.A.C.C. Fontes. Optimal control for an irrigation
problem with several fields and common reservoir. Lecture Notes in
Electrical Engineering, pages 179–188, 2016.
Sofia O. Lopes, F. A.C.C. Fontes, Rui M.S. Pereira, MdR de Pinho,
and M. Gonc¸alves. Optimal control applied to an irrigation planning
problem. Mathematical Problems in Engineering, 17:10, 2016.
Sofia O Lopes, FACC Fontes, and MdR de Pinho. On constraint qualifications
for nondegenerate necessary conditions of optimality applied to
optimal control problems. Discrete and Continuous Dynamical System-
A, 29(2), 2011
Sofia O Lopes, Fernando ACC Fontes, and MDR de Pinho. An
integral-type constraint qualification to guarantee nondegeneracy of the
maximum principle for optimal control problems with state constraints.
Systems and Control Letters, 62(8):686–692, 2013.
K. Malanowski. On normality of lagrange multipliers for state constrained
optimal control problems. Optimization, 52(1):75–91, 2003.
NASA. http://climate.nasa.gov/news/2537/nasa-noaa-data-show-2016-
warmest-year-on-record-globally. Accessed: 2017-01-20.
F. Rampazzo and R. B. Vinter. A theorem on the existence of
neighbouring feasible trajectories with aplication to optimal control. IMA
Journal of Mathematical Control and Information, 16:335–351, 1999.
J. R. Raposo. A REGA — dos primitivos regadios as modernas t´ecnicas
de rega. Fundac¸ ˜ao Calouste Gulbenkian, 1996.
J Mohan Reddy. Local optimal control of irrigation canals. Journal of
Irrigation and Drainage Engineering, 116(5):616–631, 1990.
R. Vinter. Optimal control. Birkhauser, Boston, 2000.
I. A. Walter, R. G. Allen, R. Elliott, D. Itenfisu, and et.al. The ASCE
standardized reference evapotranspiration equation. Rep. Task Com. on
Standardized Reference Evapotranspiration, 2002.
DOI: http://dx.doi.org/10.34629/ipl.isel.i-ETC.34
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Sofia O. Lopes, Fernando A. C. C. Fontes
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.