Combined detection of nitrite and bioelectrical activity using microelectrode arrays and a phosphate buffered saline solution

Fernando Luis de Almeida, Wilmar Souza Junior, Yann Lima Moraes, Sebastião Gomes dos Santos Filho, Douglas Veronez, Idagene Cestari

Abstract


This paper presents the manufacturing of a
microelectrode array, on printed circuit boards (PCB) and on
silicon substrate, composed of 60 to 64 gold microelectrodes
(between 4 µm and 70 µm each in diameter). The sensor has a
measurement total area of 0.5 cm in radius, one reference
electrode (1 mm2 in area) and 28.4 mm wide and 28.4 mm long.
These microelectrodes were used for checking and logging of
extracelullar local field potential of cell culture and nitrite
measurement in a phosphate buffered saline solution
(electrolytical aqueous medium). In addition, an apparatus to
shield from electromagnetic interference for connecting the
arrays was designed to allow the capture of electrochemical
reactions or electronic signals by the microelectrodes, for
example: nitrite or cardiac potential measurement, respectively.
Finally, biocompatibility tests of the array structures were
performed. The preliminary electrical and biocompatibility
testing, along with the collected data, has shown promising
results pointing to the development of an accurate sensor after
the completion of this study. The sensor has potentially a
broader range of applications with only a few adaptations and
due its good accuracy it can be a very useful resource for many
chemical and biological applications.


Keywords


extracelullar local field potentials, myoblasts, gold microelectrodes, nitrite, heart.

Full Text:

PDF

References


F. Bacal et al.. II Diretriz Brasileira de Transplante Cardíaco. Arq Bras Cardiol., Vol. 94. No. 1 supl.1, pp. E16-E73, 2009. Available at: http://www.scielo.br/pdf/

abc/v94n1s1/01.pdf. Accessed on: 27 May 2018.

Datasus. Morbidity SUS Hospital. Available at: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sih/cnv/niuf.def. Accessed on: 27 May 2018.

AI. Fiorelli. Hospital mortality in waiting list for heart transplantation: a comparative analysis of patients operated as priority or not. In: VI BRAZILIAN CONGRESS OF HEART FAILURE. Available at: http://congresso.cardiol.br/geic/viii/temas-livres/TLp16746.pdf. Accessed on: 05 June 2015.

Registration Brazilian Transplant. ABTO. Available at: http://www.abto.org.br/abtov03/default.aspx?mn=457&c=900&s=0. Accessed on: 27 May 2018.

Registration Brazilian Transplant. Dimensionamento dos Transplantes no Brasil em cada estado. 2017. 117 p. Available at: http://www.abto.org.br/abtov03/Upload/

file/RBT/2017/rbt-imprensa-leitura-compressed.pdf. Accessed on: 27 May 2018.

S. Klotz, AH. Jan Danser, and DB. Impact of left ventricular assist device (LVAD) support on the reverse cardiac remodeling process. Prog. Biophys Mol. Biol., Vol. 97, No. 2-3, pp. 479-496, 2008.

doi:10.1016/j.pbiomolbio.2008.02.002.

AV. Ambardekar, and MW. Buttrick. Reverse left ventricular remodeling with assist devices: a review of clinical, cellular and molecular effects. Circ. Heart Fail., Vol. 4, No. 2, pp. 224-233, 2011.

doi:10.1161/CIRCHEARTFAILURE.110.959684.

MH. Yacoub, and CM. Terracciano. The Holy Grail of LVAD-induced reversal of severe chronic heart failure: the need for integration. European Heart Journal, Vol. 32, No. 9, pp. 1052-1054, 2011.

doi:10.1093/eurheartj/ehq503.

K. Dipla, JA. Mattiello, and V. Jeevanandam. Myocyte recovery after mechanical circulatory support in humans with end-stage heart failure. Circulation, Vol. 97, No. 23, pp. 2316-2322, 1998. doi:10.1161/01.CIR.97.23.2316.

PM. Heerdt, S. Klotz, and D. Burkhoff. Cardiomyopathic etiology and SERCA2a mechanical support during reverse remodeling of the failing human heart. Anesth. Analg., Vol. 102, No. 1, pp. 32-37, 2006. doi:10.1213/01.ane.0000183642.09435.ad.

SG. Drakos et al.. Reverse Electrophysiologic remodeling after cardiac mechanical unloading for end-stage nonischemic cardiomyopathy. Ann. Thorac. Surg., Vol. 91, No. 1, pp. 764-769, 2011. doi:10.1016/j.athoracsur.2010.10.091.

AC. Guyton, and JE. Hall. Tratado de Fisiologia Médica, 12. ed. Elsevier, 2011. pp. 45-163.

E. Widmaier, H. Raff, and K. Strang. Vander Vander's human physiology: the mechanisms of body function. The McGraw-Hill Company, 2001.

P. Camelliti, A-SS. Abou, and RT. Smolenski. Adult human heart slices are a multicellular system suitable for electrophysiological and pharmacological studies. Journal of Molecular and Cellular Cardiology, Vol. 51, No. 3, pp. 390-398, 2011. doi:10.1016/j.yjmcc.2011.06.018.

A. Bussek et al.. Tissue Slices from Adult Mammalian Hearts as a Model for Pharmacological Drug Testing. Cellular Physiology and Biochemistry, Vol. 24, No. 5-6, pp. 527-536, 2009. doi:10.1159/000257528.

Carl Gold; Darrell A. Henze; Christof Koch .Using extracellular action potential recordings to constrain compartmental models. J. Comput. Neur., Vol. 23, No. 1, pp. 39-58, 2007. doi:10.1007/s10827-006-0018-2.

LGJ. Tertoolen, SR. Braam, and BJ. Van Meer. Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes. Biochem. and Biophy. Research Comm., Vol. 497, No. 4, pp. 1135-1141, 2018. doi:10.1016/j.bbrc.2017.01.151.

CB. Vidor. Teste e caracterização de uma matriz multieletrodo para registro de sinais eletrofisiológicos in vitro, 2012. 77 p. Universidade Católica do Rio Grande do Sul.

M. Zhang, F. Cheng, and F. Gan. Electrochemical nitrite nanosensor based on Au nanoparticles/graphene nanocomposites. Int. J. Electrochem. Sci., Vol. 10, pp. 5905-5913, 2015. Available at: http://or.nsfc.gov.cn/handle/00001903-5/212867. Accessed on: 20 Agu. 2018.

M. Habermeyer et al.. Nitrate and nitrite in the diet: How to assess their benefit and risk for human health. Mol. Nutr. Food Res., Vol. 59, No. 1, pp. 106-128, 2015. doi:10.1002/mnfr.201400286.

MJ. Moorcroft, J. Davis, and RG. Compton. Detection and determination of nitrate and nitrite: a review. Talanta, Vol. 54, No. 5, pp. 785-803, 2001. doi:10.1016/S0039-9140(01)00323-X.

A. Dejam et al.. Erythrocytes are the major intravascular storage sites of nitrite in human blood. Blood, Vol. 106, No. 2, pp. 734-739, 2005. doi: doi:10.1182/blood-2005-02-0567.

MBA. Sources, R Furlan, and IA Cestari. Microelectrode array is Potential Cardiac Mapping. IN: XVI International Conference on MICROELECTRONICS PACKAGING AND-SBMICRO2011. Pirenópolis, GO, Brazil, 2011.

FL. Almeida. Measurement microelectrodes Pim-Au-Cu (II) and solid state reference electrodes of Au / AuxCly / PPI-CI / PU: voltammetric sensor integrated on a planar substrate modified with silicon and conductive polymers for measuring in physiological medium of nitrite..., 2014. 332 p. Ph.D Thesis - Polytechnic School, University of São Paulo, São Paulo, Mar. 2014.

M. Mazzetto et al.. System detection, amplification and acquisition of potential for analysis of cardiac electrical activity. J. Biom. Eng., Vol. 13, pp. 19-29, 1997.




DOI: http://dx.doi.org/10.34629/ipl.isel.i-ETC.73

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Fernando Luis de Almeida, Wilmar Souza Junior, Yann Lima Moraes, Sebastião Gomes dos Santos Filho, Douglas Veronez, Idagene Cestari

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.